scispace - formally typeset
Search or ask a question
Conference

National Conference on Artificial Intelligence 

About: National Conference on Artificial Intelligence is an academic conference. The conference publishes majorly in the area(s): Reinforcement learning & Computer science. Over the lifetime, 20352 publications have been published by the conference receiving 722329 citations.


Papers
More filters
Proceedings Article
23 Feb 2016
TL;DR: In this article, the authors show that training with residual connections accelerates the training of Inception networks significantly, and they also present several new streamlined architectures for both residual and non-residual Inception Networks.
Abstract: Very deep convolutional networks have been central to the largest advances in image recognition performance in recent years. One example is the Inception architecture that has been shown to achieve very good performance at relatively low computational cost. Recently, the introduction of residual connections in conjunction with a more traditional architecture has yielded state-of-the-art performance in the 2015 ILSVRC challenge; its performance was similar to the latest generation Inception-v3 network. This raises the question: Are there any benefits to combining Inception architectures with residual connections? Here we give clear empirical evidence that training with residual connections accelerates the training of Inception networks significantly. There is also some evidence of residual Inception networks outperforming similarly expensive Inception networks without residual connections by a thin margin. We also present several new streamlined architectures for both residual and non-residual Inception networks. These variations improve the single-frame recognition performance on the ILSVRC 2012 classification task significantly. We further demonstrate how proper activation scaling stabilizes the training of very wide residual Inception networks. With an ensemble of three residual and one Inception-v4 networks, we achieve 3.08% top-5 error on the test set of the ImageNet classification (CLS) challenge.

4,051 citations

Proceedings Article
01 Jan 1998
TL;DR: It is found that the multi-variate Bernoulli performs well with small vocabulary sizes, but that the multinomial performs usually performs even better at larger vocabulary sizes--providing on average a 27% reduction in error over the multi -variateBernoulli model at any vocabulary size.
Abstract: Recent work in text classification has used two different first-order probabilistic models for classification, both of which make the naive Bayes assumption. Some use a multi-variate Bernoulli model, that is, a Bayesian Network with no dependencies between words and binary word features (e.g. Larkey and Croft 1996; Koller and Sahami 1997). Others use a multinomial model, that is, a uni-gram language model with integer word counts (e.g. Lewis and Gale 1994; Mitchell 1997). This paper aims to clarify the confusion by describing the differences and details of these two models, and by empirically comparing their classification performance on five text corpora. We find that the multi-variate Bernoulli performs well with small vocabulary sizes, but that the multinomial performs usually performs even better at larger vocabulary sizes--providing on average a 27% reduction in error over the multi-variate Bernoulli model at any vocabulary size.

3,601 citations

Proceedings Article
27 Jul 2014
TL;DR: This paper proposes TransH which models a relation as a hyperplane together with a translation operation on it and can well preserve the above mapping properties of relations with almost the same model complexity of TransE.
Abstract: We deal with embedding a large scale knowledge graph composed of entities and relations into a continuous vector space. TransE is a promising method proposed recently, which is very efficient while achieving state-of-the-art predictive performance. We discuss some mapping properties of relations which should be considered in embedding, such as reflexive, one-to-many, many-to-one, and many-to-many. We note that TransE does not do well in dealing with these properties. Some complex models are capable of preserving these mapping properties but sacrifice efficiency in the process. To make a good trade-off between model capacity and efficiency, in this paper we propose TransH which models a relation as a hyperplane together with a translation operation on it. In this way, we can well preserve the above mapping properties of relations with almost the same model complexity of TransE. Additionally, as a practical knowledge graph is often far from completed, how to construct negative examples to reduce false negative labels in training is very important. Utilizing the one-to-many/many-to-one mapping property of a relation, we propose a simple trick to reduce the possibility of false negative labeling. We conduct extensive experiments on link prediction, triplet classification and fact extraction on benchmark datasets like WordNet and Freebase. Experiments show TransH delivers significant improvements over TransE on predictive accuracy with comparable capability to scale up.

2,835 citations

Proceedings Article
Yankai Lin1, Zhiyuan Liu1, Maosong Sun1, Yang Liu2, Xuan Zhu2 
25 Jan 2015
TL;DR: TransR is proposed to build entity and relation embeddings in separate entity space and relation spaces to build translations between projected entities and to evaluate the models on three tasks including link prediction, triple classification and relational fact extraction.
Abstract: Knowledge graph completion aims to perform link prediction between entities. In this paper, we consider the approach of knowledge graph embeddings. Recently, models such as TransE and TransH build entity and relation embeddings by regarding a relation as translation from head entity to tail entity. We note that these models simply put both entities and relations within the same semantic space. In fact, an entity may have multiple aspects and various relations may focus on different aspects of entities, which makes a common space insufficient for modeling. In this paper, we propose TransR to build entity and relation embeddings in separate entity space and relation spaces. Afterwards, we learn embeddings by first projecting entities from entity space to corresponding relation space and then building translations between projected entities. In experiments, we evaluate our models on three tasks including link prediction, triple classification and relational fact extraction. Experimental results show significant and consistent improvements compared to state-of-the-art baselines including TransE and TransH. The source code of this paper can be obtained from https://github.com/mrlyk423/relation_extraction.

2,823 citations

Proceedings Article
27 Apr 2018
TL;DR: Wang et al. as discussed by the authors proposed a novel model of dynamic skeletons called Spatial-Temporal Graph Convolutional Networks (ST-GCN), which moves beyond the limitations of previous methods by automatically learning both the spatial and temporal patterns from data.
Abstract: Dynamics of human body skeletons convey significant information for human action recognition. Conventional approaches for modeling skeletons usually rely on hand-crafted parts or traversal rules, thus resulting in limited expressive power and difficulties of generalization. In this work, we propose a novel model of dynamic skeletons called Spatial-Temporal Graph Convolutional Networks (ST-GCN), which moves beyond the limitations of previous methods by automatically learning both the spatial and temporal patterns from data. This formulation not only leads to greater expressive power but also stronger generalization capability. On two large datasets, Kinetics and NTU-RGBD, it achieves substantial improvements over mainstream methods.

2,681 citations

Performance
Metrics
No. of papers from the Conference in previous years
YearPapers
20211,420
20202,261
20191,670
20181,262
20171,107
20161,137