scispace - formally typeset
Search or ask a question
Conference

Symposium on Computational Geometry 

About: Symposium on Computational Geometry is an academic conference. The conference publishes majorly in the area(s): Time complexity & Voronoi diagram. Over the lifetime, 1988 publications have been published by the conference receiving 72102 citations.


Papers
More filters
Proceedings ArticleDOI
08 Jun 2004
TL;DR: A novel Locality-Sensitive Hashing scheme for the Approximate Nearest Neighbor Problem under lp norm, based on p-stable distributions that improves the running time of the earlier algorithm and yields the first known provably efficient approximate NN algorithm for the case p<1.
Abstract: We present a novel Locality-Sensitive Hashing scheme for the Approximate Nearest Neighbor Problem under lp norm, based on p-stable distributions.Our scheme improves the running time of the earlier algorithm for the case of the lp norm. It also yields the first known provably efficient approximate NN algorithm for the case p

3,109 citations

Proceedings ArticleDOI
Kenneth L. Clarkson1
06 Jan 1988
TL;DR: Asymptotically tight bounds for a combinatorial quantity of interest in discrete and computational geometry, related to halfspace partitions of point sets, are given.
Abstract: Random sampling is used for several new geometric algorithms. The algorithms are “Las Vegas,” and their expected bounds are with respect to the random behavior of the algorithms. One algorithm reports all the intersecting pairs of a set of line segments in the plane, and requires O(A + n log n) expected time, where A is the size of the answer, the number of intersecting pairs reported. The algorithm requires O(n) space in the worst case. Another algorithm computes the convex hull of a point set in E3 in O(n log A) expected time, where n is the number of points and A is the number of points on the surface of the hull. A simple Las Vegas algorithm triangulates simple polygons in O(n log log n) expected time. Algorithms for half-space range reporting are also given. In addition, this paper gives asymptotically tight bounds for a combinatorial quantity of interest in discrete and computational geometry, related to halfspace partitions of point sets.

1,163 citations

Proceedings ArticleDOI
06 Jun 2005
TL;DR: The persistence diagram of a real-valued function on a topological space is a multiset of points in the extended plane and it is proved that under mild assumptions on the function, the persistence diagram is stable.
Abstract: The persistence diagram of a real-valued function on a topological space is a multiset of points in the extended plane. We prove that under mild assumptions on the function, the persistence diagram is stable: small changes in the function imply only small changes in the diagram. We apply this result to estimating the homology of sets in a metric space and to comparing and classifying geometric shapes.

828 citations

Proceedings ArticleDOI
08 Jun 2004
TL;DR: The homology of a filtered d-dimensional simplicial complex K is studied as a single algebraic entity and a correspondence is established that provides a simple description over fields that enables a natural algorithm for computing persistent homology over an arbitrary field in any dimension.
Abstract: We study the homology of a filtered d-dimensional simplicial complex K as a single algebraic entity and establish a correspondence that provides a simple description over fields. Our analysis enables us to derive a natural algorithm for computing persistent homology over an arbitrary field in any dimension. Our study also implies the lack of a simple classification over non-fields. Instead, we give an algorithm for computing individual persistent homology groups over an arbitrary PIDs in any dimension.

674 citations

Proceedings ArticleDOI
Steven Fortune1
01 Aug 1986
TL;DR: A transformation is used to obtain simple algorithms for computing the Voronoi diagram of point sites, of line segment sites, and of weighted point sites with sweepline technique.
Abstract: We present a transformation that can be used to compute Voronoi diagrams with a sweepline technique. The transformation is used to obtain simple algorithms for computing the Voronoi diagram of point sites, of line segment sites, and of weighted point sites. All algorithms have O(n log n) worst case running time and use O(n) space.

641 citations

Performance
Metrics
No. of papers from the Conference in previous years
YearPapers
202127
202071
201955
201864
201762
201668