scispace - formally typeset
Search or ask a question
Conference

Symposium on Operating Systems Principles 

About: Symposium on Operating Systems Principles is an academic conference. The conference publishes majorly in the area(s): File system & Self-certifying File System. Over the lifetime, 862 publications have been published by the conference receiving 147961 citations.


Papers
More filters
Journal ArticleDOI
19 Oct 2003
TL;DR: Xen, an x86 virtual machine monitor which allows multiple commodity operating systems to share conventional hardware in a safe and resource managed fashion, but without sacrificing either performance or functionality, considerably outperform competing commercial and freely available solutions.
Abstract: Numerous systems have been designed which use virtualization to subdivide the ample resources of a modern computer. Some require specialized hardware, or cannot support commodity operating systems. Some target 100% binary compatibility at the expense of performance. Others sacrifice security or functionality for speed. Few offer resource isolation or performance guarantees; most provide only best-effort provisioning, risking denial of service.This paper presents Xen, an x86 virtual machine monitor which allows multiple commodity operating systems to share conventional hardware in a safe and resource managed fashion, but without sacrificing either performance or functionality. This is achieved by providing an idealized virtual machine abstraction to which operating systems such as Linux, BSD and Windows XP, can be ported with minimal effort.Our design is targeted at hosting up to 100 virtual machine instances simultaneously on a modern server. The virtualization approach taken by Xen is extremely efficient: we allow operating systems such as Linux and Windows XP to be hosted simultaneously for a negligible performance overhead --- at most a few percent compared with the unvirtualized case. We considerably outperform competing commercial and freely available solutions in a range of microbenchmarks and system-wide tests.

6,326 citations

Journal ArticleDOI
19 Oct 2003
TL;DR: This paper presents file system interface extensions designed to support distributed applications, discusses many aspects of the design, and reports measurements from both micro-benchmarks and real world use.
Abstract: We have designed and implemented the Google File System, a scalable distributed file system for large distributed data-intensive applications. It provides fault tolerance while running on inexpensive commodity hardware, and it delivers high aggregate performance to a large number of clients. While sharing many of the same goals as previous distributed file systems, our design has been driven by observations of our application workloads and technological environment, both current and anticipated, that reflect a marked departure from some earlier file system assumptions. This has led us to reexamine traditional choices and explore radically different design points. The file system has successfully met our storage needs. It is widely deployed within Google as the storage platform for the generation and processing of data used by our service as well as research and development efforts that require large data sets. The largest cluster to date provides hundreds of terabytes of storage across thousands of disks on over a thousand machines, and it is concurrently accessed by hundreds of clients. In this paper, we present file system interface extensions designed to support distributed applications, discuss many aspects of our design, and report measurements from both micro-benchmarks and real world use.

5,429 citations

Proceedings ArticleDOI
14 Oct 2007
TL;DR: D Dynamo is presented, a highly available key-value storage system that some of Amazon's core services use to provide an "always-on" experience and makes extensive use of object versioning and application-assisted conflict resolution in a manner that provides a novel interface for developers to use.
Abstract: Reliability at massive scale is one of the biggest challenges we face at Amazon.com, one of the largest e-commerce operations in the world; even the slightest outage has significant financial consequences and impacts customer trust. The Amazon.com platform, which provides services for many web sites worldwide, is implemented on top of an infrastructure of tens of thousands of servers and network components located in many datacenters around the world. At this scale, small and large components fail continuously and the way persistent state is managed in the face of these failures drives the reliability and scalability of the software systems.This paper presents the design and implementation of Dynamo, a highly available key-value storage system that some of Amazon's core services use to provide an "always-on" experience. To achieve this level of availability, Dynamo sacrifices consistency under certain failure scenarios. It makes extensive use of object versioning and application-assisted conflict resolution in a manner that provides a novel interface for developers to use.

4,349 citations

Proceedings ArticleDOI
21 Oct 2001
TL;DR: It is found that forwarding packets via at most one intermediate RON node is sufficient to overcome faults and improve performance in most cases, demonstrating the benefits of moving some of the control over routing into the hands of end-systems.
Abstract: A Resilient Overlay Network (RON) is an architecture that allows distributed Internet applications to detect and recover from path outages and periods of degraded performance within several seconds, improving over today's wide-area routing protocols that take at least several minutes to recover. A RON is an application-layer overlay on top of the existing Internet routing substrate. The RON nodes monitor the functioning and quality of the Internet paths among themselves, and use this information to decide whether to route packets directly over the Internet or by way of other RON nodes, optimizing application-specific routing metrics.Results from two sets of measurements of a working RON deployed at sites scattered across the Internet demonstrate the benefits of our architecture. For instance, over a 64-hour sampling period in March 2001 across a twelve-node RON, there were 32 significant outages, each lasting over thirty minutes, over the 132 measured paths. RON's routing mechanism was able to detect, recover, and route around all of them, in less than twenty seconds on average, showing that its methods for fault detection and recovery work well at discovering alternate paths in the Internet. Furthermore, RON was able to improve the loss rate, latency, or throughput perceived by data transfers; for example, about 5% of the transfers doubled their TCP throughput and 5% of our transfers saw their loss probability reduced by 0.05. We found that forwarding packets via at most one intermediate RON node is sufficient to overcome faults and improve performance in most cases. These improvements, particularly in the area of fault detection and recovery, demonstrate the benefits of moving some of the control over routing into the hands of end-systems.

1,968 citations

Proceedings ArticleDOI
21 Oct 2001
TL;DR: The Cooperative File System is a new peer-to-peer read-only storage system that provides provable guarantees for the efficiency, robustness, and load-balance of file storage and retrieval with a completely decentralized architecture that can scale to large systems.
Abstract: The Cooperative File System (CFS) is a new peer-to-peer read-only storage system that provides provable guarantees for the efficiency, robustness, and load-balance of file storage and retrieval. CFS does this with a completely decentralized architecture that can scale to large systems. CFS servers provide a distributed hash table (DHash) for block storage. CFS clients interpret DHash blocks as a file system. DHash distributes and caches blocks at a fine granularity to achieve load balance, uses replication for robustness, and decreases latency with server selection. DHash finds blocks using the Chord location protocol, which operates in time logarithmic in the number of servers.CFS is implemented using the SFS file system toolkit and runs on Linux, OpenBSD, and FreeBSD. Experience on a globally deployed prototype shows that CFS delivers data to clients as fast as FTP. Controlled tests show that CFS is scalable: with 4,096 servers, looking up a block of data involves contacting only seven servers. The tests also demonstrate nearly perfect robustness and unimpaired performance even when as many as half the servers fail.

1,733 citations

Performance
Metrics
No. of papers from the Conference in previous years
YearPapers
202154
201945
201752
201546
201413
201340