Example of Australian Journal of Botany format
Recent searches

Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format
Sample paper formatted on SciSpace - SciSpace
This content is only for preview purposes. The original open access content can be found here.
Look Inside
Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format Example of Australian Journal of Botany format
Sample paper formatted on SciSpace - SciSpace
This content is only for preview purposes. The original open access content can be found here.
open access Open Access

Australian Journal of Botany — Template for authors

Publisher: CSIRO Publishing
Categories Rank Trend in last 3 yrs
Plant Science #188 of 445 up up by 1 rank
Ecology, Evolution, Behavior and Systematics #313 of 647 up up by 26 ranks
journal-quality-icon Journal quality:
Good
calendar-icon Last 4 years overview: 232 Published Papers | 528 Citations
indexed-in-icon Indexed in: Scopus
last-updated-icon Last updated: 15/06/2020
Related journals
Insights
General info
Top papers
Popular templates
Get started guide
Why choose from SciSpace
FAQ

Related Journals

open access Open Access

Springer

Quality:  
High
CiteRatio: 4.0
SJR: 0.875
SNIP: 0.949
open access Open Access
recommended Recommended

Springer

Quality:  
High
CiteRatio: 6.1
SJR: 1.095
SNIP: 1.178
open access Open Access

Springer

Quality:  
High
CiteRatio: 4.0
SJR: 0.848
SNIP: 1.375

Journal Performance & Insights

Impact Factor

CiteRatio

Determines the importance of a journal by taking a measure of frequency with which the average article in a journal has been cited in a particular year.

A measure of average citations received per peer-reviewed paper published in the journal.

1.386

19% from 2018

Impact factor for Australian Journal of Botany from 2016 - 2019
Year Value
2019 1.386
2018 1.164
2017 0.903
2016 0.793
graph view Graph view
table view Table view

2.3

CiteRatio for Australian Journal of Botany from 2016 - 2020
Year Value
2020 2.3
2019 2.3
2018 2.0
2017 1.7
2016 2.7
graph view Graph view
table view Table view

insights Insights

  • Impact factor of this journal has increased by 19% in last year.
  • This journal’s impact factor is in the top 10 percentile category.

insights Insights

  • This journal’s CiteRatio is in the top 10 percentile category.

SCImago Journal Rank (SJR)

Source Normalized Impact per Paper (SNIP)

Measures weighted citations received by the journal. Citation weighting depends on the categories and prestige of the citing journal.

Measures actual citations received relative to citations expected for the journal's category.

0.425

25% from 2019

SJR for Australian Journal of Botany from 2016 - 2020
Year Value
2020 0.425
2019 0.568
2018 0.43
2017 0.393
2016 0.836
graph view Graph view
table view Table view

0.604

10% from 2019

SNIP for Australian Journal of Botany from 2016 - 2020
Year Value
2020 0.604
2019 0.672
2018 0.568
2017 0.564
2016 0.759
graph view Graph view
table view Table view

insights Insights

  • SJR of this journal has decreased by 25% in last years.
  • This journal’s SJR is in the top 10 percentile category.

insights Insights

  • SNIP of this journal has decreased by 10% in last years.
  • This journal’s SNIP is in the top 10 percentile category.

Australian Journal of Botany

Guideline source: View

All company, product and service names used in this website are for identification purposes only. All product names, trademarks and registered trademarks are property of their respective owners.

Use of these names, trademarks and brands does not imply endorsement or affiliation. Disclaimer Notice

CSIRO Publishing

Australian Journal of Botany

Australian Journal of Botany is an international journal for publication of original research in plant science. We seek papers of broad interest with relevance to Southern Hemisphere ecosystems. Our scope encompasses all approaches to understanding plant biology.... Read More

i
Last updated on
15 Jun 2020
i
ISSN
0067-1924
i
Impact Factor
Medium - 0.793
i
Acceptance Rate
Not provided
i
Frequency
8 issues per year
i
Open Access
Yes
i
Sherpa RoMEO Archiving Policy
Green faq
i
Plagiarism Check
Available via Turnitin
i
Endnote Style
Download Available
i
Citation Type
Author Year
(Blonder et al, 1982)
i
Bibliography Example
Blonder GE, Tinkham M, Klapwijk TM (1982) Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25(7), 4515–4532

Top papers written in this journal

open accessOpen access Journal Article DOI: 10.1071/BT02124
A handbook of protocols for standardised and easy measurement of plant functional traits worldwide

Abstract:

There is growing recognition that classifying terrestrial plant species on the basis of their function (into 'functional types') rather than their higher taxonomic identity, is a promising way forward for tackling important ecological questions at the scale of ecosystems, landscapes or biomes. These questions include those on... There is growing recognition that classifying terrestrial plant species on the basis of their function (into 'functional types') rather than their higher taxonomic identity, is a promising way forward for tackling important ecological questions at the scale of ecosystems, landscapes or biomes. These questions include those on vegetation responses to and vegetation effects on, environmental changes (e.g. changes in climate, atmospheric chemistry, land use or other disturbances). There is also growing consensus about a shortlist of plant traits that should underlie such functional plant classifications, because they have strong predictive power of important ecosystem responses to environmental change and/or they themselves have strong impacts on ecosystem processes. The most favoured traits are those that are also relatively easy and inexpensive to measure for large numbers of plant species. Large international research efforts, promoted by the IGBP–GCTE Programme, are underway to screen predominant plant species in various ecosystems and biomes worldwide for such traits. This paper provides an international methodological protocol aimed at standardising this research effort, based on consensus among a broad group of scientists in this field. It features a practical handbook with step-by-step recipes, with relatively brief information about the ecological context, for 28 functional traits recognised as critical for tackling large-scale ecological questions. read more read less
View PDF
3,288 Citations
open accessOpen access Journal Article DOI: 10.1071/BT12225
New handbook for standardised measurement of plant functional traits worldwide

Abstract:

Plant functional traits are the features (morphological, physiological, phenological) that represent ecological strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem properties. Variation in plant functional traits, and trait syndromes, has proven useful for ... Plant functional traits are the features (morphological, physiological, phenological) that represent ecological strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem properties. Variation in plant functional traits, and trait syndromes, has proven useful for tackling many important ecological questions at a range of scales, giving rise to a demand for standardised ways to measure ecologically meaningful plant traits. This line of research has been among the most fruitful avenues for understanding ecological and evolutionary patterns and processes. It also has the potential both to build a predictive set of local, regional and global relationships between plants and environment and to quantify a wide range of natural and human-driven processes, including changes in biodiversity, the impacts of species invasions, alterations in biogeochemical processes and vegetation–atmosphere interactions. The importance of these topics dictates the urgent need for more and better data, and increases the value of standardised protocols for quantifying trait variation of different species, in particular for traits with power to predict plant- and ecosystem-level processes, and for traits that can be measured relatively easily. Updated and expanded from the widely used previous version, this handbook retains the focus on clearly presented, widely applicable, step-by-step recipes, with a minimum of text on theory, and not only includes updated methods for the traits previously covered, but also introduces many new protocols for further traits. This new handbook has a better balance between whole-plant traits, leaf traits, root and stem traits and regenerative traits, and puts particular emphasis on traits important for predicting species’ effects on key ecosystem properties. We hope this new handbook becomes a standard companion in local and global efforts to learn about the responses and impacts of different plant species with respect to environmental changes in the present, past and future. read more read less
View PDF
2,744 Citations
Journal Article DOI: 10.1071/BT06118
Roots of the Second Green Revolution

Abstract:

The Green Revolution boosted crop yields in developing nations by introducing dwarf genotypes of wheat and rice capable of responding to fertilisation without lodging. We now need a second Green Revolution, to improve the yield of crops grown in infertile soils by farmers with little access to fertiliser, who represent the ma... The Green Revolution boosted crop yields in developing nations by introducing dwarf genotypes of wheat and rice capable of responding to fertilisation without lodging. We now need a second Green Revolution, to improve the yield of crops grown in infertile soils by farmers with little access to fertiliser, who represent the majority of third-world farmers. Just as the Green Revolution was based on crops responsive to high soil fertility, the second Green Revolution will be based on crops tolerant of low soil fertility. Substantial genetic variation in the productivity of crops in infertile soil has been known for over a century. In recent years we have developed a better understanding of the traits responsible for this variation. Root architecture is critically important by determining soil exploration and therefore nutrient acquisition. Architectural traits under genetic control include basal-root gravitropism, adventitious-root formation and lateral branching. Architectural traits that enhance topsoil foraging are important for acquisition of phosphorus from infertile soils. Genetic variation in the length and density of root hairs is important for the acquisition of immobile nutrients such as phosphorus and potassium. Genetic variation in root cortical aerenchyma formation and secondary development (‘root etiolation’) are important in reducing the metabolic costs of root growth and soil exploration. Genetic variation in rhizosphere modification through the efflux of protons, organic acids and enzymes is important for the mobilisation of nutrients such as phosphorus and transition metals, and the avoidance of aluminum toxicity. Manipulation of ion transporters may be useful for improving the acquisition of nitrate and for enhancing salt tolerance. With the noteworthy exceptions of rhizosphere modification and ion transporters, most of these traits are under complex genetic control. Genetic variation in these traits is associated with substantial yield gains in low-fertility soils, as illustrated by the case of phosphorus efficiency in bean and soybean. In breeding crops for low-fertility soils, selection for specific root traits through direct phenotypic evaluation or molecular markers is likely to be more productive than conventional field screening. Crop genotypes with greater yield in infertile soils will substantially improve the productivity and sustainability of low-input agroecosystems, and in high-input agroecosystems will reduce the environmental impacts of intensive fertilisation. Although the development of crops with reduced fertiliser requirements has been successful in the few cases it has been attempted, the global scientific effort devoted to this enterprise is small, especially considering the magnitude of the humanitarian, environmental and economic benefits being forgone. Population growth, ongoing soil degradation and increasing costs of chemical fertiliser will make the second Green Revolution a priority for plant biology in the 21st century. read more read less

Topics:

Second Green Revolution (57%)57% related to the paper, Lateral root branching (56%)56% related to the paper, Soil fertility (55%)55% related to the paper, Aerenchyma formation (54%)54% related to the paper, Topsoil (51%)51% related to the paper
1,081 Citations
Journal Article DOI: 10.1071/BT07151
‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems
Dennis D. Baldocchi1

Abstract:

Published eddy covariance measurements of carbon dioxide (CO2) exchange between vegetation and the atmosphere from a global network are distilled, synthesised and reviewed according to time scale, climate and plant functional types, disturbance and land use. Other topics discussed include history of the network, errors and is... Published eddy covariance measurements of carbon dioxide (CO2) exchange between vegetation and the atmosphere from a global network are distilled, synthesised and reviewed according to time scale, climate and plant functional types, disturbance and land use. Other topics discussed include history of the network, errors and issues associated with the eddy covariance method, and a synopsis of how these data are being used by ecosystem and climate modellers and the remote-sensing community. Spatial and temporal differences in net annual exchange, FN, result from imbalances in canopy photosynthesis (FA) and ecosystem respiration (FR), which scale closely with one another on annual time scales. Key findings reported include the following: (1) ecosystems with the greatest net carbon uptake have the longest growing season, not the greatest FA; (2) ecosystems losing carbon were recently disturbed; (3) many old-growth forests act as carbon sinks; and (4) year-to-year decreases in FN are attributed to a suite of stresses that decrease FA and FR in tandem. Short-term flux measurements revealed emergent-scale processes including (1) the enhancement of light use efficiency by diffuse light, (2) dynamic pulses in FR following rain and (3) the acclimation FA and FR to temperature. They also quantify how FA and FR respond to droughts and heat spells. read more read less

Topics:

FluxNet (57%)57% related to the paper, Ecosystem respiration (57%)57% related to the paper, Eddy covariance (57%)57% related to the paper, Carbon sink (54%)54% related to the paper, Ecosystem (51%)51% related to the paper
View PDF
1,050 Citations
Journal Article DOI: 10.1071/BT00023
The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism
Stephen McLoughlin1

Abstract:

The concept of 'Gondwana', an ancient Southern Hemisphere supercontinent, is firmly established in geological and biogeographical models of Earth history. The term Gondwana (Gondwanaland of some authors) derives from the recognition by workers at the Indian Geological Survey in the mid- to late 19th century of a distinctive s... The concept of 'Gondwana', an ancient Southern Hemisphere supercontinent, is firmly established in geological and biogeographical models of Earth history. The term Gondwana (Gondwanaland of some authors) derives from the recognition by workers at the Indian Geological Survey in the mid- to late 19th century of a distinctive sedimentary sequence preserved in east central India. This succession, now known to range in age from Permian to Cretaceous, is lithologically and palaeontologically similar to coeval non-marine sedimentary successions developed in most of the Southern Hemisphere continents suggesting former continuity of these landmasses. Palaeomagnetic data and tectonic reconstructions suggest that the main assembly of Gondwana took place around the beginning of the Palaeozoic in near-equatorial latitudes and that the supercontinent as a whole shifted into high southern latitudes, allowing widespread glaciation by the end of the Carboniferous. From Carboniferous to Cretaceous times the southern continents had broadly similar floras but some species-level provincialism is apparent at all times. The break-up of Gondwana initiated during the Jurassic (at about 180 million years ago) and this process is continuing. The earliest rifting (crustal attenuation) within the supercontinent initiated in the west (between South America and Africa) and in general terms the rifting pattern propagated eastward with major phases of continental fragmentation in the Early Cretaceous and Late Cretaceous to Paleogene. Gondwanan floras show radical turnovers near the end of the Carboniferous, end of the Permian and the end of the Triassic that appear to be unrelated to isolation or fragmentation of the supercontinent. Throughout the late Palaeozoic and Mesozoic the high-latitude southern floras maintained a distinctly different composition to the palaeoequatorial and boreal regions even though they remained in physical connection with Laurasia for much of this time. Gondwanan floras of the Jurassic and Early Cretaceous (times immediately preceding and during break-up) were dominated by araucarian and podocarp conifers and a range of enigmatic seed-fern groups. Angiosperms became established in the region as early as the Aptian (before the final break-up events) and steadily diversified during the Cretaceous, apparently at the expense of many seed-fern groups. Hypotheses invoking vicariance or long distance dispersal to account for the biogeographic patterns evident in the floras of Southern Hemisphere continents all rely on a firm understanding of the timing and sequence of Gondwanan continental breakup. This paper aims to summarise the current understanding of the geochronological framework of Gondwanan breakup against which these biogeographic models may be tested. Most phytogeographic studies deal with the extant, angiosperm-dominated floras of these landmasses. This paper also presents an overview of pre-Cenozoic, gymnosperm-dominated, floristic provincialism in Gondwana. It documents the broad succession of pre-angiosperm floras, highlights the distinctive elements of the Early Cretaceous Gondwanan floras immediately preceding the appearance of angiosperms and suggests that latitudinal controls strongly influenced the composition of Gondwanan floras through time even in the absence of marine barriers between Gondwana and the northern continents. Go na br nd prn ti l S.ou read more read less

Topics:

Gondwana (63%)63% related to the paper, Supercontinent (61%)61% related to the paper, Laurasia (58%)58% related to the paper, Paleozoic (55%)55% related to the paper, Permian (55%)55% related to the paper
666 Citations
Author Pic

SciSpace is a very innovative solution to the formatting problem and existing providers, such as Mendeley or Word did not really evolve in recent years.

- Andreas Frutiger, Researcher, ETH Zurich, Institute for Biomedical Engineering

Get MS-Word and LaTeX output to any Journal within seconds
1
Choose a template
Select a template from a library of 40,000+ templates
2
Import a MS-Word file or start fresh
It takes only few seconds to import
3
View and edit your final output
SciSpace will automatically format your output to meet journal guidelines
4
Submit directly or Download
Submit to journal directly or Download in PDF, MS Word or LaTeX

(Before submission check for plagiarism via Turnitin)

clock Less than 3 minutes

What to expect from SciSpace?

Speed and accuracy over MS Word

''

With SciSpace, you do not need a word template for Australian Journal of Botany.

It automatically formats your research paper to CSIRO Publishing formatting guidelines and citation style.

You can download a submission ready research paper in pdf, LaTeX and docx formats.

Time comparison

Time taken to format a paper and Compliance with guidelines

Plagiarism Reports via Turnitin

SciSpace has partnered with Turnitin, the leading provider of Plagiarism Check software.

Using this service, researchers can compare submissions against more than 170 million scholarly articles, a database of 70+ billion current and archived web pages. How Turnitin Integration works?

Turnitin Stats
Publisher Logos

Freedom from formatting guidelines

One editor, 100K journal formats – world's largest collection of journal templates

With such a huge verified library, what you need is already there.

publisher-logos

Easy support from all your favorite tools

Automatically format and order your citations and bibliography in a click.

SciSpace allows imports from all reference managers like Mendeley, Zotero, Endnote, Google Scholar etc.

Frequently asked questions

1. Can I write Australian Journal of Botany in LaTeX?

Absolutely not! Our tool has been designed to help you focus on writing. You can write your entire paper as per the Australian Journal of Botany guidelines and auto format it.

2. Do you follow the Australian Journal of Botany guidelines?

Yes, the template is compliant with the Australian Journal of Botany guidelines. Our experts at SciSpace ensure that. If there are any changes to the journal's guidelines, we'll change our algorithm accordingly.

3. Can I cite my article in multiple styles in Australian Journal of Botany?

Of course! We support all the top citation styles, such as APA style, MLA style, Vancouver style, Harvard style, and Chicago style. For example, when you write your paper and hit autoformat, our system will automatically update your article as per the Australian Journal of Botany citation style.

4. Can I use the Australian Journal of Botany templates for free?

Sign up for our free trial, and you'll be able to use all our features for seven days. You'll see how helpful they are and how inexpensive they are compared to other options, Especially for Australian Journal of Botany.

5. Can I use a manuscript in Australian Journal of Botany that I have written in MS Word?

Yes. You can choose the right template, copy-paste the contents from the word document, and click on auto-format. Once you're done, you'll have a publish-ready paper Australian Journal of Botany that you can download at the end.

6. How long does it usually take you to format my papers in Australian Journal of Botany?

It only takes a matter of seconds to edit your manuscript. Besides that, our intuitive editor saves you from writing and formatting it in Australian Journal of Botany.

7. Where can I find the template for the Australian Journal of Botany?

It is possible to find the Word template for any journal on Google. However, why use a template when you can write your entire manuscript on SciSpace , auto format it as per Australian Journal of Botany's guidelines and download the same in Word, PDF and LaTeX formats? Give us a try!.

8. Can I reformat my paper to fit the Australian Journal of Botany's guidelines?

Of course! You can do this using our intuitive editor. It's very easy. If you need help, our support team is always ready to assist you.

9. Australian Journal of Botany an online tool or is there a desktop version?

SciSpace's Australian Journal of Botany is currently available as an online tool. We're developing a desktop version, too. You can request (or upvote) any features that you think would be helpful for you and other researchers in the "feature request" section of your account once you've signed up with us.

10. I cannot find my template in your gallery. Can you create it for me like Australian Journal of Botany?

Sure. You can request any template and we'll have it setup within a few days. You can find the request box in Journal Gallery on the right side bar under the heading, "Couldn't find the format you were looking for like Australian Journal of Botany?”

11. What is the output that I would get after using Australian Journal of Botany?

After writing your paper autoformatting in Australian Journal of Botany, you can download it in multiple formats, viz., PDF, Docx, and LaTeX.

12. Is Australian Journal of Botany's impact factor high enough that I should try publishing my article there?

To be honest, the answer is no. The impact factor is one of the many elements that determine the quality of a journal. Few of these factors include review board, rejection rates, frequency of inclusion in indexes, and Eigenfactor. You need to assess all these factors before you make your final call.

13. What is Sherpa RoMEO Archiving Policy for Australian Journal of Botany?

SHERPA/RoMEO Database

We extracted this data from Sherpa Romeo to help researchers understand the access level of this journal in accordance with the Sherpa Romeo Archiving Policy for Australian Journal of Botany. The table below indicates the level of access a journal has as per Sherpa Romeo's archiving policy.

RoMEO Colour Archiving policy
Green Can archive pre-print and post-print or publisher's version/PDF
Blue Can archive post-print (ie final draft post-refereeing) or publisher's version/PDF
Yellow Can archive pre-print (ie pre-refereeing)
White Archiving not formally supported
FYI:
  1. Pre-prints as being the version of the paper before peer review and
  2. Post-prints as being the version of the paper after peer-review, with revisions having been made.

14. What are the most common citation types In Australian Journal of Botany?

The 5 most common citation types in order of usage for Australian Journal of Botany are:.

S. No. Citation Style Type
1. Author Year
2. Numbered
3. Numbered (Superscripted)
4. Author Year (Cited Pages)
5. Footnote

15. How do I submit my article to the Australian Journal of Botany?

It is possible to find the Word template for any journal on Google. However, why use a template when you can write your entire manuscript on SciSpace , auto format it as per Australian Journal of Botany's guidelines and download the same in Word, PDF and LaTeX formats? Give us a try!.

16. Can I download Australian Journal of Botany in Endnote format?

Yes, SciSpace provides this functionality. After signing up, you would need to import your existing references from Word or Bib file to SciSpace. Then SciSpace would allow you to download your references in Australian Journal of Botany Endnote style according to Elsevier guidelines.

Fast and reliable,
built for complaince.

Instant formatting to 100% publisher guidelines on - SciSpace.

Available only on desktops 🖥

No word template required

Typset automatically formats your research paper to Australian Journal of Botany formatting guidelines and citation style.

Verifed journal formats

One editor, 100K journal formats.
With the largest collection of verified journal formats, what you need is already there.

Trusted by academicians

I spent hours with MS word for reformatting. It was frustrating - plain and simple. With SciSpace, I can draft my manuscripts and once it is finished I can just submit. In case, I have to submit to another journal it is really just a button click instead of an afternoon of reformatting.

Andreas Frutiger
Researcher & Ex MS Word user
Use this template