Example of Critical Reviews in Biotechnology format
Recent searches

Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format
Sample paper formatted on SciSpace - SciSpace
This content is only for preview purposes. The original open access content can be found here.
Look Inside
Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format Example of Critical Reviews in Biotechnology format
Sample paper formatted on SciSpace - SciSpace
This content is only for preview purposes. The original open access content can be found here.
open access Open Access ISSN: 7388551 e-ISSN: 15497801
recommended Recommended

Critical Reviews in Biotechnology — Template for authors

Publisher: Taylor and Francis
Categories Rank Trend in last 3 yrs
Applied Microbiology and Biotechnology #5 of 113 up up by 5 ranks
Biotechnology #15 of 282 up up by 7 ranks
journal-quality-icon Journal quality:
High
calendar-icon Last 4 years overview: 297 Published Papers | 4417 Citations
indexed-in-icon Indexed in: Scopus
last-updated-icon Last updated: 24/06/2020
Insights & related journals
General info
Top papers
Popular templates
Get started guide
Why choose from SciSpace
FAQ

Journal Performance & Insights

  • Impact Factor
  • CiteRatio
  • SJR
  • SNIP

Impact factor determines the importance of a journal by taking a measure of frequency with which the average article in a journal has been cited in a particular year.

8.108

15% from 2018

Impact factor for Critical Reviews in Biotechnology from 2016 - 2019
Year Value
2019 8.108
2018 7.054
2017 5.239
2016 6.542
graph view Graph view
table view Table view

insights Insights

  • Impact factor of this journal has increased by 15% in last year.
  • This journal’s impact factor is in the top 10 percentile category.

CiteRatio is a measure of average citations received per peer-reviewed paper published in the journal.

14.9

9% from 2019

CiteRatio for Critical Reviews in Biotechnology from 2016 - 2020
Year Value
2020 14.9
2019 13.7
2018 10.5
2017 8.1
2016 7.8
graph view Graph view
table view Table view

insights Insights

  • CiteRatio of this journal has increased by 9% in last years.
  • This journal’s CiteRatio is in the top 10 percentile category.

SCImago Journal Rank (SJR) measures weighted citations received by the journal. Citation weighting depends on the categories and prestige of the citing journal.

1.702

0% from 2019

SJR for Critical Reviews in Biotechnology from 2016 - 2020
Year Value
2020 1.702
2019 1.703
2018 1.698
2017 1.243
2016 1.285
graph view Graph view
table view Table view

insights Insights

  • SJR of this journal has decreased by 0% in last years.
  • This journal’s SJR is in the top 10 percentile category.

Source Normalized Impact per Paper (SNIP) measures actual citations received relative to citations expected for the journal's category.

2.222

4% from 2019

SNIP for Critical Reviews in Biotechnology from 2016 - 2020
Year Value
2020 2.222
2019 2.324
2018 2.001
2017 1.511
2016 1.518
graph view Graph view
table view Table view

insights Insights

  • SNIP of this journal has decreased by 4% in last years.
  • This journal’s SNIP is in the top 10 percentile category.

Related Journals

open access Open Access ISSN: 10870156 e-ISSN: 15461696
recommended Recommended

Nature

CiteRatio: 37.4 | SJR: 15.358 | SNIP: 7.029
open access Open Access ISSN: 992240 e-ISSN: 10985336
recommended Recommended

American Society for Microbiology

CiteRatio: 7.1 | SJR: 1.552 | SNIP: 1.292
open access Open Access ISSN: 1757598 e-ISSN: 14320614

Springer

CiteRatio: 7.0 | SJR: 1.074 | SNIP: 1.269
open access Open Access e-ISSN: 17546834
recommended Recommended

Springer

CiteRatio: 9.9 | SJR: 1.44 | SNIP: 1.541

Critical Reviews in Biotechnology

Guideline source: View

All company, product and service names used in this website are for identification purposes only. All product names, trademarks and registered trademarks are property of their respective owners.

Use of these names, trademarks and brands does not imply endorsement or affiliation. Disclaimer Notice

Taylor and Francis

Critical Reviews in Biotechnology

Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to ...... Read More

Medicine

i
Last updated on
24 Jun 2020
i
ISSN
0738-8551
i
Impact Factor
High - 2.987
i
Open Access
Yes
i
Sherpa RoMEO Archiving Policy
Green faq
i
Plagiarism Check
Available via Turnitin
i
Endnote Style
Download Available
i
Bibliography Name
Taylor and Francis Custom Citation
i
Citation Type
Numbered
[25]
i
Bibliography Example
Blonder GE, Tinkham M, Klapwijk TM. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys Rev B. 1982; 25(7):4515–4532. Available from: 10.1103/PhysRevB.25.4515.

Top papers written in this journal

Journal Article DOI: 10.1080/07388550091144212
Lycopene in tomatoes: chemical and physical properties affected by food processing
John Shi1, M Le Maguer

Abstract:

Lycopene is the pigment principally responsible for the characteristic deep-red color of ripe tomato fruits and tomato products. It has attracted attention due to its biological and physicochemical properties, especially related to its effects as a natural antioxidant. Although it has no provitamin A activity, lycopene does e... Lycopene is the pigment principally responsible for the characteristic deep-red color of ripe tomato fruits and tomato products. It has attracted attention due to its biological and physicochemical properties, especially related to its effects as a natural antioxidant. Although it has no provitamin A activity, lycopene does exhibit a physical quenching rate constant with singlet oxygen almost twice as high as that of beta-carotene. This makes its presence in the diet of considerable interest. Increasing clinical evidence supports the role of lycopene as a micronutrient with important health benefits, because it appears to provide protection against a broad range of epithelial cancers. Tomatoes and related tomato products are the major source of lycopene compounds, and are also considered an important source of carotenoids in the human diet. Undesirable degradation of lycopene not only affects the sensory quality of the final products, but also the health benefit of tomato-based foods for the human body. Lycopene in fresh tomato fruits occurs essentially in the all-trans configuration. The main causes of tomato lycopene degradation during processing are isomerization and oxidation. Isomerization converts all-trans isomers to cis-isomers due to additional energy input and results in an unstable, energy-rich station. Determination of the degree of lycopene isomerization during processing would provide a measure of the potential health benefits of tomato-based foods. Thermal processing (bleaching, retorting, and freezing processes) generally cause some loss of lycopene in tomato-based foods. Heat induces isomerization of the all-trans to cis forms. The cis-isomers increase with temperature and processing time. In general, dehydrated and powdered tomatoes have poor lycopene stability unless carefully processed and promptly placed in a hermetically sealed and inert atmosphere for storage. A significant increase in the cis-isomers with a simultaneous decrease in the all-trans isomers can be observed in the dehydrated tomato samples using the different dehydration methods. Frozen foods and heat-sterilized foods exhibit excellent lycopene stability throughout their normal temperature storage shelf life. Lycopene bioavailability (absorption) can be influenced by many factors. The bioavailability of cis-isomers in food is higher than that of all-trans isomers. Lycopene bioavailability in processed tomato products is higher than in unprocessed fresh tomatoes. The composition and structure of the food also have an impact on the bioavailability of lycopene and may affect the release of lycopene from the tomato tissue matrix. Food processing may improve lycopene bioavailability by breaking down cell walls, which weakens the bonding forces between lycopene and tissue matrix, thus making lycopene more accessible and enhancing the cis-isomerization. More information on lycopene bioavailability, however, is needed. The pharmacokinetic properties of lycopene remain particularly poorly understood. Further research on the bioavalability, pharmacology, biochemistry, and physiology must be done to reveal the mechanism of lycopene in human diet, and the in vivo metabolism of lycopene. Consumer demand for healthy food products provides an opportunity to develop lycopene-rich food as new functional foods, as well as food-grade and pharmaceutical-grade lycopene as new nutraceutical products. An industrial scale, environmentally friendly lycopene extraction and purification procedure with minimal loss of bioactivities is highly desirable for the foods, feed, cosmetic, and pharmaceutical industries. High-quality lycopene products that meet food safety regulations will offer potential benefits to the food industry. read more read less

Topics:

Lycopene (62%)62% related to the paper, Cis trans isomerization (53%)53% related to the paper, Dried fruit (50%)50% related to the paper
893 Citations
Journal Article DOI: 10.1080/07388550290789513
Botryococcus braunii: A Renewable Source of Hydrocarbons and Other Chemicals
Anirban Banerjee1, Rohit Sharma1, Yusuf Chisti2, Uttam Chand Banerjee1

Abstract:

Botryococcus braunii, a green colonial microalga, is an unusually rich renewable source of hydrocarbons and other chemicals. Hydrocarbons can constitute up to 75% of the dry mass of B. braunii. This review details the various facets of biotechnology of B. braunii, including its microbiology and physiology; production of hydro... Botryococcus braunii, a green colonial microalga, is an unusually rich renewable source of hydrocarbons and other chemicals. Hydrocarbons can constitute up to 75% of the dry mass of B. braunii. This review details the various facets of biotechnology of B. braunii, including its microbiology and physiology; production of hydrocarbons and other compounds by the alga; methods of culture; downstream recovery and processing of algal hydrocarbons; and cloning of the algal genes into other microorganisms. B. braunii converts simple inorganic compounds and sunlight to potential hydrocarbon fuels and feedstocks for the chemical industry. Microorganisms such as B. braunii can, in the long run, reduce our dependence on fossil fuels and because of this B. braunii continues to attract much attention. read more read less

Topics:

Botryococcus braunii (69%)69% related to the paper, Botryococcus (50%)50% related to the paper
View PDF
697 Citations
Journal Article DOI: 10.3109/07388550903524243
Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress
Parvaiz Ahmad1, Cheruth Abdul Jaleel2, Mohamed A. Salem2, Gowher Nabi3, Satyawati Sharma1

Abstract:

Reactive oxygen species (ROS) are produced in plants as byproducts during many metabolic reactions, such as photosynthesis and respiration. Oxidative stress occurs when there is a serious imbalance between the production of ROS and antioxidant defense. Generation of ROS causes rapid cell damage by triggering a chain reaction.... Reactive oxygen species (ROS) are produced in plants as byproducts during many metabolic reactions, such as photosynthesis and respiration. Oxidative stress occurs when there is a serious imbalance between the production of ROS and antioxidant defense. Generation of ROS causes rapid cell damage by triggering a chain reaction. Cells have evolved an elaborate system of enzymatic and nonenzymatic antioxidants which help to scavenge these indigenously generated ROS. Various enzymes involved in ROS-scavenging have been manipulated, over expressed or downregulated to add to the present knowledge and understanding the role of the antioxidant systems. The present article reviews the manipulation of enzymatic and nonenzymatic antioxidants in plants to enhance the environmental stress tolerance and also throws light on ROS and redox signaling, calcium signaling, and ABA signaling. read more read less

Topics:

Oxidative stress (52%)52% related to the paper
665 Citations
Journal Article DOI: 10.1080/07388550500248571
Use of Algae for Removing Heavy Metal Ions From Wastewater: Progress and Prospects
S.K. Mehta1, J.P. Gaur1

Abstract:

Many algae have immense capability to sorb metals, and there is considerable potential for using them to treat wastewaters. Metal sorption involves binding on the cell surface and to intracellular ligands. The adsorbed metal is several times greater than intracellular metal. Carboxyl group is most important for metal binding.... Many algae have immense capability to sorb metals, and there is considerable potential for using them to treat wastewaters. Metal sorption involves binding on the cell surface and to intracellular ligands. The adsorbed metal is several times greater than intracellular metal. Carboxyl group is most important for metal binding. Concentration of metal and biomass in solution, pH, temperature, cations, anions and metabolic stage of the organism affect metal sorption. Algae can effectively remove metals from multi-metal solutions. Dead cells sorb more metal than live cells. Various pretreatments enhance metal sorption capacity of algae. CaCl2 pretreatment is the most suitable and economic method for activation of algal biomass. Algal periphyton has great potential for removing metals from wastewaters. An immobilized or granulated biomass-filled column can be used for several sorption/desorption cycles with unaltered or slightly decreased metal removal. Langmuir and Freundlich models, commonly used for fitting sorption data, cannot precisely describe metal sorption since they ignore the effect of pH, biomass concentration, etc. For commercial application of algal technology for metal removal from wastewaters, emphasis should be given to: (i) selection of strains with high metal sorption capacity, (ii) adequate understanding of sorption mechanisms, (iii) development of low-cost methods for cell immobilization, (iv) development of better models for predicting metal sorption, (v) genetic manipulation of algae for increased number of surface groups or over expression of metal binding proteins, and (vi) economic feasibility. read more read less

Topics:

Sorption (65%)65% related to the paper, Desorption (56%)56% related to the paper, Biosorption (54%)54% related to the paper, Metal ions in aqueous solution (51%)51% related to the paper, Adsorption (50%)50% related to the paper
644 Citations
Journal Article DOI: 10.1080/07388550290789450
Biotechnology of microbial xylanases: enzymology, molecular biology, and application.
S. Subramaniyan1, P. Prema1

Abstract:

Xylanases are hydrolases depolymerizing the plant cell wall component xylan, the second most abundant polysaccharide. The molecular structure and hydrolytic pattern of xylanases have been reported extensively and the mechanism of hydrolysis has also been proposed. There are several models for the gene regulation of which this... Xylanases are hydrolases depolymerizing the plant cell wall component xylan, the second most abundant polysaccharide. The molecular structure and hydrolytic pattern of xylanases have been reported extensively and the mechanism of hydrolysis has also been proposed. There are several models for the gene regulation of which this article could add to the wealth of knowledge. Future work on the application of these enzymes in the paper and pulp, food industry, in environmental science, that is, bio-fueling, effluent treatment, and agro-waste treatment, etc. require a complete understanding of the functional and genetic significance of the xylanases. However, the thrust area has been identified as the paper and pulp industry. The major problem in the field of paper bleaching is the removal of lignin and its derivatives, which are linked to cellulose and xylan. Xylanases are more suitable in the paper and pulp industry than lignin-degrading systems. read more read less
626 Citations
Author Pic

SciSpace is a very innovative solution to the formatting problem and existing providers, such as Mendeley or Word did not really evolve in recent years.

- Andreas Frutiger, Researcher, ETH Zurich, Institute for Biomedical Engineering

Get MS-Word and LaTeX output to any Journal within seconds
1
Choose a template
Select a template from a library of 40,000+ templates
2
Import a MS-Word file or start fresh
It takes only few seconds to import
3
View and edit your final output
SciSpace will automatically format your output to meet journal guidelines
4
Submit directly or Download
Submit to journal directly or Download in PDF, MS Word or LaTeX

(Before submission check for plagiarism via Turnitin)

clock Less than 3 minutes

What to expect from SciSpace?

Speed and accuracy over MS Word

''

With SciSpace, you do not need a word template for Critical Reviews in Biotechnology.

It automatically formats your research paper to Taylor and Francis formatting guidelines and citation style.

You can download a submission ready research paper in pdf, LaTeX and docx formats.

Time comparison

Time taken to format a paper and Compliance with guidelines

Plagiarism Reports via Turnitin

SciSpace has partnered with Turnitin, the leading provider of Plagiarism Check software.

Using this service, researchers can compare submissions against more than 170 million scholarly articles, a database of 70+ billion current and archived web pages. How Turnitin Integration works?

Turnitin Stats
Publisher Logos

Freedom from formatting guidelines

One editor, 100K journal formats – world's largest collection of journal templates

With such a huge verified library, what you need is already there.

publisher-logos

Easy support from all your favorite tools

Critical Reviews in Biotechnology format uses Taylor and Francis Custom Citation citation style.

Automatically format and order your citations and bibliography in a click.

SciSpace allows imports from all reference managers like Mendeley, Zotero, Endnote, Google Scholar etc.

Frequently asked questions

Absolutely not! With our tool, you can freely write without having to focus on LaTeX. You can write your entire paper as per the Critical Reviews in Biotechnology guidelines and autoformat it.

Yes. The template is fully compliant as per the guidelines of this journal. Our experts at SciSpace ensure that. Also, if there's any update in the journal format guidelines, we take care of it and include that in our algorithm.

Sure. We support all the top citation styles like APA style, MLA style, Vancouver style, Harvard style, Chicago style, etc. For example, in case of this journal, when you write your paper and hit autoformat, it will automatically update your article as per the Critical Reviews in Biotechnology citation style.

You can avail our Free Trial for 7 days. I'm sure you'll find our features very helpful. Plus, it's quite inexpensive.

Yup. You can choose the right template, copy-paste the contents from the word doc and click on auto-format. You'll have a publish-ready paper that you can download at the end.

A matter of seconds. Besides that, our intuitive editor saves a load of your time in writing and formating your manuscript.

One little Google search can get you the Word template for any journal. However, why do you need a Word template when you can write your entire manuscript on SciSpace, autoformat it as per Critical Reviews in Biotechnology's guidelines and download the same in Word, PDF and LaTeX formats? Try us out!.

Absolutely! You can do it using our intuitive editor. It's very easy. If you need help, you can always contact our support team.

SciSpace is an online tool for now. We'll soon release a desktop version. You can also request (or upvote) any feature that you think might be helpful for you and the research community in the feature request section once you sign-up with us.

Sure. You can request any template and we'll have it up and running within a matter of 3 working days. You can find the request box in the Journal Gallery on the right sidebar under the heading, "Couldn't find the format you were looking for?".

After you have written and autoformatted your paper, you can download it in multiple formats, viz., PDF, Docx and LaTeX.

To be honest, the answer is NO. The impact factor is one of the many elements that determine the quality of a journal. Few of those factors the review board, rejection rates, frequency of inclusion in indexes, Eigenfactor, etc. You must assess all the factors and then take the final call.

SHERPA/RoMEO Database

We have extracted this data from Sherpa Romeo to help our researchers understand the access level of this journal. The following table indicates the level of access a journal has as per Sherpa Romeo Archiving Policy.

RoMEO Colour Archiving policy
Green Can archive pre-print and post-print or publisher's version/PDF
Blue Can archive post-print (ie final draft post-refereeing) or publisher's version/PDF
Yellow Can archive pre-print (ie pre-refereeing)
White Archiving not formally supported
FYI:
  1. Pre-prints as being the version of the paper before peer review and
  2. Post-prints as being the version of the paper after peer-review, with revisions having been made.

The 5 most common citation types in order of usage are:.

S. No. Citation Style Type
1. Author Year
2. Numbered
3. Numbered (Superscripted)
4. Author Year (Cited Pages)
5. Footnote

Our journal submission experts are skilled in submitting papers to various international journals.

After uploading your paper on SciSpace, you would see a button to request a journal submission service for Critical Reviews in Biotechnology.

Each submission service is completed within 4 - 5 working days.

Yes. SciSpace provides this functionality.

After signing up, you would need to import your existing references from Word or .bib file.

SciSpace would allow download of your references in Critical Reviews in Biotechnology Endnote style, according to taylor-and-francis guidelines.

Fast and reliable,
built for complaince.

Instant formatting to 100% publisher guidelines on - SciSpace.

Available only on desktops 🖥

No word template required

Typset automatically formats your research paper to Critical Reviews in Biotechnology formatting guidelines and citation style.

Verifed journal formats

One editor, 100K journal formats.
With the largest collection of verified journal formats, what you need is already there.

Trusted by academicians

I spent hours with MS word for reformatting. It was frustrating - plain and simple. With SciSpace, I can draft my manuscripts and once it is finished I can just submit. In case, I have to submit to another journal it is really just a button click instead of an afternoon of reformatting.

Andreas Frutiger
Researcher & Ex MS Word user
Use this template