scispace - formally typeset
Search or ask a question
Institution

Aalto University

EducationEspoo, Finland
About: Aalto University is a education organization based out in Espoo, Finland. It is known for research contribution in the topics: Population & Carbon nanotube. The organization has 9969 authors who have published 32648 publications receiving 829626 citations. The organization is also known as: TKK & Aalto-korkeakoulu.


Papers
More filters
Journal ArticleDOI
TL;DR: A kind of visible saturable absorber-two-dimensional transition-metal dichalcogenides (TMDs) is reported, which may open a new route for next-generation high-performance pulsed laser sources in the visible (even ultraviolet) range.
Abstract: Passive Q-switching or mode-locking by placing a saturable absorber inside the laser cavity is one of the most effective and popular techniques for pulse generation. However, most of the current saturable absorbers cannot work well in the visible spectral region, which seriously impedes the progress of passively Q-switched/mode-locked visible pulsed fibre lasers. Here, we report a kind of visible saturable absorber-two-dimensional transition-metal dichalcogenides (TMDs, e.g. WS2, MoS2, MoSe2), and successfully demonstrate compact red-light Q-switched praseodymium (Pr(3+))-doped all-fibre lasers. The passive Q-switching operation at 635 nm generates stable laser pulses with ∼200 ns pulse duration, 28.7 nJ pulse energy and repetition rate from 232 to 512 kHz. This achievement is attributed to the ultrafast saturable absorption of these layered TMDs in the visible region, as well as the compact and all-fibre laser-cavity design by coating a dielectric mirror on the fibre end facet. This work may open a new route for next-generation high-performance pulsed laser sources in the visible (even ultraviolet) range.

233 citations

Journal ArticleDOI
TL;DR: Graphene/cellulose nanocomposite paper with high mechanical and electrical performances was reported in this paper by combining reduced graphene oxide sheets (RGO) and amine-modified nanofibrillated cellulose (A-NFC) in a well-controlled manner.
Abstract: Graphene/cellulose nanocomposite paper with high mechanical and electrical performances was reported in this study by combining reduced graphene oxide sheets (RGO) and amine-modified nanofibrillated cellulose (A-NFC) in a well-controlled manner. By adjusting the GO content, various graphene/cellulose nanocomposites with 0.1–10 wt% content of graphene were obtained. The RGO/A-NFC nanocomposite synthesized by the developed method exhibits an electrical percolation threshold of 0.3 wt% with an electrical conductivity of 4.79 × 10−4 S m−1, which is well above the antistatic value. Furthermore, with 10 wt% of graphene, a high conductivity of 71.8 S m−1 was measured for the nanocomposite. Moreover, it was found that on addition of only 0.3 wt% of graphene, the tensile strength increased by 1.2 fold and 2.3 folds compared to that of the neat cellulose and graphene oxide paper, respectively, revealing an excellent reinforcement of graphene sheets. Moreover, the elongation at break of the composite with graphene content was 8.5%, which is similar to that of A-NFC paper and much higher than that of GO paper. It is noteworthy to mention that with 5 wt% of graphene, the RGO/A-NFC composite paper showed a significantly enhanced tensile strength of 273 MPa that is 1.4 fold and 2.8 folds higher than that of the cellulose papers and graphene oxide paper, respectively. Such a high enhancement of electrical and mechanical properties in cellulose paper by graphene has never been reported before for any carbon-based material/cellulose composite paper.

233 citations

Journal ArticleDOI
TL;DR: This work demonstrates molecular fingerprinting at the nanoscale level using a specially designed graphene plasmonic structure on CaF2 nanofilm, fulfilling the long-awaited expectation of high sensitivity and selectivity far-field fingerprint detection of nano-scale molecules for numerous applications.
Abstract: Infrared spectroscopy, especially for molecular vibrations in the fingerprint region between 600 and 1,500 cm−1, is a powerful characterization method for bulk materials. However, molecular fingerprinting at the nanoscale level still remains a significant challenge, due to weak light–matter interaction between micron-wavelengthed infrared light and nano-sized molecules. Here we demonstrate molecular fingerprinting at the nanoscale level using our specially designed graphene plasmonic structure on CaF2 nanofilm. This structure not only avoids the plasmon–phonon hybridization, but also provides in situ electrically-tunable graphene plasmon covering the entire molecular fingerprint region, which was previously unattainable. In addition, undisturbed and highly confined graphene plasmon offers simultaneous detection of in-plane and out-of-plane vibrational modes with ultrahigh detection sensitivity down to the sub-monolayer level, significantly pushing the current detection limit of far-field mid-infrared spectroscopies. Our results provide a platform, fulfilling the long-awaited expectation of high sensitivity and selectivity far-field fingerprint detection of nano-scale molecules for numerous applications. Despite being a powerful tool for molecular vibrational mode detection, infrared spectrosocpy is limited by weak sensitivity. Here, the authors demonstrate a platform for enhanced molecular fingerprint sensing based on a graphene/CaF2nanofilm plasmonic structure.

233 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the motivation for and role of theory in management accounting and argue that theories in an applied field such as management accounting research should provide explanations that are useful for those we study.
Abstract: In this article we discuss the motivation for and role of theory in management accounting. We argue that theories in an applied field such as management accounting research should provide explanations that are useful for those we study – managers, organizations and society. We evaluate the nature of theories currently used and developed. Those theories that are considered theories by the research community are largely imported from other disciplines, but have hardly anything that makes them unique to management accounting. Those theories that are not currently regarded as theories by many of our colleagues attempt to explain how to apply management accounting to achieve superior performance. We argue that both forms of theories, at present, largely fail to provide valid support for practitioners. We contend that management accounting theory should help us to answer questions of what kind of management accounting systems we should apply, how, in what circumstances, and how to change them. We provide sugges...

233 citations

Journal ArticleDOI
TL;DR: The causes of artifacts in EEG recordings resulting from TMS, as well as artifacts introduced during analysis (e.g. as the result of filtering over high‐frequency, large amplitude artifacts) are reviewed and methods for removing them are discussed.

233 citations


Authors

Showing all 10135 results

NameH-indexPapersCitations
John B. Goodenough1511064113741
Ashok Kumar1515654164086
Anne Lähteenmäki11648581977
Kalyanmoy Deb112713122802
Riitta Hari11149143873
Robin I. M. Dunbar11158647498
Andreas Richter11076948262
Mika Sillanpää96101944260
Muhammad Farooq92134137533
Ivo Babuška9037641465
Merja Penttilä8730322351
Andries Meijerink8742629335
T. Poutanen8612033158
Sajal K. Das85112429785
Kalle Lyytinen8442627708
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

95% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022342
20212,842
20203,030
20192,749
20182,719