scispace - formally typeset
Search or ask a question
Institution

Aalto University

EducationEspoo, Finland
About: Aalto University is a education organization based out in Espoo, Finland. It is known for research contribution in the topics: Population & Carbon nanotube. The organization has 9969 authors who have published 32648 publications receiving 829626 citations. The organization is also known as: TKK & Aalto-korkeakoulu.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a class of endpoint pointwise estimates for solutions to quasilinear, possibly degenerate elliptic equations in terms of linear and nonlinear potentials of Wolff type of the source term are presented.

204 citations

Journal ArticleDOI
TL;DR: In this article, a wirelessly powered contact lens display was tested on live, anesthetized rabbits with no observed adverse effect, and the display can be powered wirelessly from ~1 m in free space and 2 cm in vivo on a rabbit.
Abstract: We present the design, construction and in vivo rabbit testing of a wirelessly powered contact lens display. The display consists of an antenna, a 500 × 500 µm2 silicon power harvesting and radio integrated circuit, metal interconnects, insulation layers and a 750 × 750 µm2 transparent sapphire chip containing a custom-designed micro-light emitting diode with peak emission at 475 nm, all integrated onto a contact lens. The display can be powered wirelessly from ~1 m in free space and ~2 cm in vivo on a rabbit. The display was tested on live, anesthetized rabbits with no observed adverse effect. In order to extend display capabilities, design and fabrication of micro-Fresnel lenses on a contact lens are presented to move toward a multipixel display that can be worn in the form of a contact lens. Contact lenses with integrated micro-Fresnel lenses were also tested on live rabbits and showed no adverse effect.

204 citations

Journal ArticleDOI
TL;DR: In this article, the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion, and new observations, including radar and low altitude spacecraft, MHD simulations, and theoretical considerations have tremendously ad-vanced our understanding of this system.
Abstract: Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low- altitude spacecraft, MHD simulations, and theoretical considerations have tremendously ad- vanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the iono- sphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. While the large-scale picture remains valid, the new

204 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived expressions of interatomic force and heat current for many-body potentials such as the Tersoff, the Brenner, and the Stillinger-Weber potential used extensively in molecular dynamics simulations of covalently bonded materials.
Abstract: We derive expressions of interatomic force and heat current for many-body potentials such as the Tersoff, the Brenner, and the Stillinger-Weber potential used extensively in molecular dynamics simulations of covalently bonded materials. Although these potentials have a many-body nature, a pairwise force expression that follows Newton's third law can be found without referring to any partition of the potential. Based on this force formula, a stress applicable for periodic systems can be unambiguously defined. The force formula can then be used to derive the heat current formulas using a natural potential partitioning. Our heat current formulation is found to be equivalent to most of the seemingly different heat current formulas used in the literature, but to deviate from the stress-based formula derived from two-body potential. We validate our formulation numerically on various systems described by the Tersoff potential, namely three-dimensional silicon and diamond, two-dimensional graphene, and quasi-one-dimensional carbon nanotube. The effects of cell size and production time used in the simulation are examined.

204 citations

Journal ArticleDOI
TL;DR: In this paper, the use of nanocelluloses as emulsifier and emulsion stabilizer is discussed, and the structural properties of nanocells such as aspect ratio and surface properties are correlated with the high efficiency in forming colloidally-stable multiphase systems.
Abstract: Despite being non-surface active, nanocelluloses position efficiently at interfaces, already at very low concentration. This behavior has lately triggered a strong interest in the cellulose and colloids communities. This review reports the recent developments on the use of nanocelluloses at interfaces and highlights the fundamental principles governing the high efficiency observed in reinforcing the boundary between two phases. The use of nanocelluloses as emulsifier and emulsion stabilizer is first discussed, and the structural properties of nanocelluloses such as aspect ratio and surface properties are correlated with the high efficiency in forming colloidally-stable multiphase systems. Then, the behavior at the air/water interface is presented and the most recent advances are reviewed with focus on the surface free energy of nanocelluloses and their role in the interfacial self-assembly process.

203 citations


Authors

Showing all 10135 results

NameH-indexPapersCitations
John B. Goodenough1511064113741
Ashok Kumar1515654164086
Anne Lähteenmäki11648581977
Kalyanmoy Deb112713122802
Riitta Hari11149143873
Robin I. M. Dunbar11158647498
Andreas Richter11076948262
Mika Sillanpää96101944260
Muhammad Farooq92134137533
Ivo Babuška9037641465
Merja Penttilä8730322351
Andries Meijerink8742629335
T. Poutanen8612033158
Sajal K. Das85112429785
Kalle Lyytinen8442627708
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

95% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022342
20212,842
20203,030
20192,749
20182,719