scispace - formally typeset
Search or ask a question
Institution

Aalto University

EducationEspoo, Finland
About: Aalto University is a education organization based out in Espoo, Finland. It is known for research contribution in the topics: Computer science & Context (language use). The organization has 9969 authors who have published 32648 publications receiving 829626 citations. The organization is also known as: TKK & Aalto-korkeakoulu.


Papers
More filters
Journal ArticleDOI
TL;DR: A manifold improvement of refractometric sensing figure-of-merit is demonstrated, and a raw surface sensitivity of two orders of magnitude higher than the current values reported for nanoplasmonic sensors is shown.
Abstract: Systems allowing label-free molecular detection are expected to have enormous impact on biochemical sciences. Research focuses on materials and technologies based on exploiting localized surface plasmon resonances in metallic nanostructures. The reason for this focused attention is their suitability for single-molecule sensing, arising from intrinsically nanoscopic sensing volume and the high sensitivity to the local environment. Here we propose an alternative route, which enables radically improved sensitivity compared with recently reported plasmon-based sensors. Such high sensitivity is achieved by exploiting the control of the phase of light in magnetoplasmonic nanoantennas. We demonstrate a manifold improvement of refractometric sensing figure-of-merit. Most remarkably, we show a raw surface sensitivity (that is, without applying fitting procedures) of two orders of magnitude higher than the current values reported for nanoplasmonic sensors. Such sensitivity corresponds to a mass of similar to 0.8 ag per nanoantenna of polyamide-6.6 (n = 1.51), which is representative for a large variety of polymers, peptides and proteins.

172 citations

Journal ArticleDOI
25 May 2016
TL;DR: A holistic view of the challenges of and issues related to preserving IoT privacy, as well as the existing solutions is provided, identified as the key solution for many IoT privacy issues.
Abstract: The Internet of Things (IoT) is the current evolutionary paradigm of networking and the key driving force toward a smart world. Although privacy in the IoT is highly regarded to ensure the protection of users and personal information from the perspective of individual or cooperative users, it's insufficiently studied. As members of the always-connected paradigm of the massive IoT world, people can scarcely control the disclosure of their personal information. The biggest challenge is to allow users to experience the best utilization of IoT-based products and services with the fewest privacy threats and failures. This article provides a holistic view of the challenges of and issues related to preserving IoT privacy, as well as the existing solutions. Privacy by design (PbD) is identified as the key solution for many IoT privacy issues. The article also discusses hot topics in IoT privacy and future research directions.

172 citations

Journal ArticleDOI
TL;DR: In this article, the influence of microfluidization pressure, cellulose nanocrystals (CNC) concentration, and oil type on droplet size and emulsion stability was determined.

171 citations

Journal ArticleDOI
TL;DR: The stimulated Raman adiabatic passage for circuit quantum electrodynamics is benchmarked by employing the first three levels of a transmon qubit by demonstrating a population transfer efficiency >80% between the ground state and the second excited state.
Abstract: The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering—enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic–adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level.

171 citations

Proceedings ArticleDOI
12 Oct 2015
TL;DR: In this article, the authors proposed a secure cross-user deduplication scheme that supports client-side encryption without requiring any additional independent servers, which is based on using a PAKE (password authenticated key exchange) protocol.
Abstract: Encrypting data on client-side before uploading it to a cloud storage is essential for protecting users' privacy. However client-side encryption is at odds with the standard practice of deduplication. Reconciling client-side encryption with cross-user deduplication is an active research topic. We present the first secure cross-user deduplication scheme that supports client-side encryption without requiring any additional independent servers. Interestingly, the scheme is based on using a PAKE (password authenticated key exchange) protocol. We demonstrate that our scheme provides better security guarantees than previous efforts. We show both the effectiveness and the efficiency of our scheme, via simulations using realistic datasets and an implementation.

171 citations


Authors

Showing all 10135 results

NameH-indexPapersCitations
John B. Goodenough1511064113741
Ashok Kumar1515654164086
Anne Lähteenmäki11648581977
Kalyanmoy Deb112713122802
Riitta Hari11149143873
Robin I. M. Dunbar11158647498
Andreas Richter11076948262
Mika Sillanpää96101944260
Muhammad Farooq92134137533
Ivo Babuška9037641465
Merja Penttilä8730322351
Andries Meijerink8742629335
T. Poutanen8612033158
Sajal K. Das85112429785
Kalle Lyytinen8442627708
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

95% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022342
20212,842
20203,030
20192,749
20182,719