scispace - formally typeset
Search or ask a question
Institution

Aalto University

EducationEspoo, Finland
About: Aalto University is a education organization based out in Espoo, Finland. It is known for research contribution in the topics: Population & Carbon nanotube. The organization has 9969 authors who have published 32648 publications receiving 829626 citations. The organization is also known as: TKK & Aalto-korkeakoulu.


Papers
More filters
Proceedings ArticleDOI
14 Jun 2020
TL;DR: In this paper, the authors propose to redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images.
Abstract: The style-based GAN architecture (StyleGAN) yields state-of-the-art results in data-driven unconditional generative image modeling. We expose and analyze several of its characteristic artifacts, and propose changes in both model architecture and training methods to address them. In particular, we redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images. In addition to improving image quality, this path length regularizer yields the additional benefit that the generator becomes significantly easier to invert. This makes it possible to reliably attribute a generated image to a particular network. We furthermore visualize how well the generator utilizes its output resolution, and identify a capacity problem, motivating us to train larger models for additional quality improvements. Overall, our improved model redefines the state of the art in unconditional image modeling, both in terms of existing distribution quality metrics as well as perceived image quality.

2,006 citations

Journal ArticleDOI
Georg Ehret1, Georg Ehret2, Georg Ehret3, Patricia B. Munroe4  +388 moreInstitutions (110)
06 Oct 2011-Nature
TL;DR: A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function, and these findings suggest potential novel therapeutic pathways for cardiovascular disease prevention.
Abstract: Blood pressure is a heritable trait(1) influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (>= 140 mm Hg systolic blood pressure or >= 90 mm Hg diastolic blood pressure)(2). Even small increments in blood pressure are associated with an increased risk of cardiovascular events(3). This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.

1,829 citations

Journal ArticleDOI
TL;DR: This article presents the projector augmented-wave (PAW) method as implemented in the GPAW program package using a uniform real-space grid representation of the electronic wavefunctions and implements the two common formulations of TDDFT, namely the linear-response and the time propagation schemes.
Abstract: Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical challenges. In this article we present the projector augmented-wave (PAW) method as implemented in the GPAW program package (https://wiki.fysik.dtu.dk/gpaw) using a uniform real-space grid representation of the electronic wavefunctions. Compared to more traditional plane wave or localized basis set approaches, real-space grids offer several advantages, most notably good computational scalability and systematic convergence properties. However, as a unique feature GPAW also facilitates a localized atomic-orbital basis set in addition to the grid. The efficient atomic basis set is complementary to the more accurate grid, and the possibility to seamlessly switch between the two representations provides great flexibility. While DFT allows one to study ground state properties, time-dependent density-functional theory (TDDFT) provides access to the excited states. We have implemented the two common formulations of TDDFT, namely the linear-response and the time propagation schemes. Electron transport calculations under finite-bias conditions can be performed with GPAW using non-equilibrium Green functions and the localized basis set. In addition to the basic features of the real-space PAW method, we also describe the implementation of selected exchange-correlation functionals, parallelization schemes, Delta SCF-method, x-ray absorption spectra, and maximally localized Wannier orbitals.

1,822 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a survey of self-interference mitigation techniques for in-band full-duplex (IBFD) wireless systems and discuss the challenges and opportunities in the design and analysis of IBFD wireless systems.
Abstract: In-band full-duplex (IBFD) operation has emerged as an attractive solution for increasing the throughput of wireless communication systems and networks. With IBFD, a wireless terminal is allowed to transmit and receive simultaneously in the same frequency band. This tutorial paper reviews the main concepts of IBFD wireless. One of the biggest practical impediments to IBFD operation is the presence of self-interference, i.e., the interference that the modem's transmitter causes to its own receiver. This tutorial surveys a wide range of IBFD self-interference mitigation techniques. Also discussed are numerous other research challenges and opportunities in the design and analysis of IBFD wireless systems.

1,752 citations

Journal ArticleDOI
Yashar Akrami1, Yashar Akrami2, M. Ashdown3, J. Aumont4  +180 moreInstitutions (59)
TL;DR: In this paper, a power-law fit to the angular power spectra of dust polarization at 353 GHz for six nested sky regions covering from 24 to 71 % of the sky is presented.
Abstract: The study of polarized dust emission has become entwined with the analysis of the cosmic microwave background (CMB) polarization. We use new Planck maps to characterize Galactic dust emission as a foreground to the CMB polarization. We present Planck EE, BB, and TE power spectra of dust polarization at 353 GHz for six nested sky regions covering from 24 to 71 % of the sky. We present power-law fits to the angular power spectra, yielding evidence for statistically significant variations of the exponents over sky regions and a difference between the values for the EE and BB spectra. The TE correlation and E/B power asymmetry extend to low multipoles that were not included in earlier Planck polarization papers. We also report evidence for a positive TB dust signal. Combining data from Planck and WMAP, we determine the amplitudes and spectral energy distributions (SEDs) of polarized foregrounds, including the correlation between dust and synchrotron polarized emission, for the six sky regions as a function of multipole. This quantifies the challenge of the component separation procedure required for detecting the reionization and recombination peaks of primordial CMB B modes. The SED of polarized dust emission is fit well by a single-temperature modified blackbody emission law from 353 GHz to below 70 GHz. For a dust temperature of 19.6 K, the mean spectral index for dust polarization is $\beta_{\rm d}^{P} = 1.53\pm0.02 $. By fitting multi-frequency cross-spectra, we examine the correlation of the dust polarization maps across frequency. We find no evidence for decorrelation. If the Planck limit for the largest sky region applies to the smaller sky regions observed by sub-orbital experiments, then decorrelation might not be a problem for CMB experiments aiming at a primordial B-mode detection limit on the tensor-to-scalar ratio $r\simeq0.01$ at the recombination peak.

1,749 citations


Authors

Showing all 10135 results

NameH-indexPapersCitations
John B. Goodenough1511064113741
Ashok Kumar1515654164086
Anne Lähteenmäki11648581977
Kalyanmoy Deb112713122802
Riitta Hari11149143873
Robin I. M. Dunbar11158647498
Andreas Richter11076948262
Mika Sillanpää96101944260
Muhammad Farooq92134137533
Ivo Babuška9037641465
Merja Penttilä8730322351
Andries Meijerink8742629335
T. Poutanen8612033158
Sajal K. Das85112429785
Kalle Lyytinen8442627708
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

95% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022342
20212,842
20203,030
20192,749
20182,719