scispace - formally typeset
Search or ask a question
Institution

Aalto University

EducationEspoo, Finland
About: Aalto University is a education organization based out in Espoo, Finland. It is known for research contribution in the topics: Population & Carbon nanotube. The organization has 9969 authors who have published 32648 publications receiving 829626 citations. The organization is also known as: TKK & Aalto-korkeakoulu.


Papers
More filters
Journal ArticleDOI
TL;DR: Brain regions contributing most to the classification accuracy included medial and inferior lateral prefrontal cortices, frontal pole, precentral and postcentral gyri, precuneus, and posterior cingulate cortex, suggesting a direct link between activity in these brain regions and the subjective emotional experience.
Abstract: Categorical models of emotions posit neurally and physiologically distinct human basic emotions. We tested this assumption by using multivariate pattern analysis (MVPA) to classify brain activity patterns of 6 basic emotions (disgust, fear, happiness, sadness, anger, and surprise) in 3 experiments. Emotions were induced with short movies or mental imagery during functional magnetic resonance imaging. MVPA accurately classified emotions induced by both methods, and the classification generalized from one induction condition to another and across individuals. Brain regions contributing most to the classification accuracy included medial and inferior lateral prefrontal cortices, frontal pole, precentral and postcentral gyri, precuneus, and posterior cingulate cortex. Thus, specific neural signatures across these regions hold representations of different emotional states in multimodal fashion, independently of how the emotions are induced. Similarity of subjective experiences between emotions was associated with similarity of neural patterns for the same emotions, suggesting a direct link between activity in these brain regions and the subjective emotional experience.

318 citations

Journal ArticleDOI
TL;DR: This paper conducted a qualitative study of Nokia to understand its rapid downfall over the 2005-2010 period from its position as a world-dominant and innovative technology organization, and found that top...
Abstract: We conducted a qualitative study of Nokia to understand its rapid downfall over the 2005–2010 period from its position as a world-dominant and innovative technology organization. We found that top ...

318 citations

Journal ArticleDOI
TL;DR: It is shown that the distribution of the number of events in a bursty period serves as a good indicator of the dependencies, leading to the universal observation of power-law distribution for a broad class of phenomena.
Abstract: Inhomogeneous temporal processes, like those appearing in human communications, neuron spike trains, and seismic signals, consist of high-activity bursty intervals alternating with long low-activity periods. In recent studies such bursty behavior has been characterized by a fat-tailed inter-event time distribution, while temporal correlations were measured by the autocorrelation function. However, these characteristic functions are not capable to fully characterize temporally correlated heterogenous behavior. Here we show that the distribution of the number of events in a bursty period serves as a good indicator of the dependencies, leading to the universal observation of power-law distribution for a broad class of phenomena. We find that the correlations in these quite different systems can be commonly interpreted by memory effects and described by a simple phenomenological model, which displays temporal behavior qualitatively similar to that in real systems.

317 citations

Proceedings ArticleDOI
01 Dec 2016
TL;DR: Experimental results show that the magnification independent CNN approach improved the performance of magnification specific model, and the results in this limited set of training data are comparable with previous state-of-the-art results obtained by hand-crafted features.
Abstract: Microscopic analysis of breast tissues is necessary for a definitive diagnosis of breast cancer which is the most common cancer among women. Pathology examination requires time consuming scanning through tissue images under different magnification levels to find clinical assessment clues to produce correct diagnoses. Advances in digital imaging techniques offers assessment of pathology images using computer vision and machine learning methods which could automate some of the tasks in the diagnostic pathology workflow. Such automation could be beneficial to obtain fast and precise quantification, reduce observer variability, and increase objectivity. In this work, we propose to classify breast cancer histopathology images independent of their magnifications using convolutional neural networks (CNNs). We propose two different architectures; single task CNN is used to predict malignancy and multi-task CNN is used to predict both malignancy and image magnification level simultaneously. Evaluations and comparisons with previous results are carried out on BreaKHis dataset. Experimental results show that our magnification independent CNN approach improved the performance of magnification specific model. Our results in this limited set of training data are comparable with previous state-of-the-art results obtained by hand-crafted features. However, unlike previous methods, our approach has potential to directly benefit from additional training data, and such additional data could be captured with same or different magnification levels than previous data.

316 citations

Journal ArticleDOI
TL;DR: In this paper, the design rules for achieving high-quality optical responses from metal nanoparticle arrays, nanofabrication advances that have enabled their production, and the theory that inspired their experimental realization are described.

316 citations


Authors

Showing all 10135 results

NameH-indexPapersCitations
John B. Goodenough1511064113741
Ashok Kumar1515654164086
Anne Lähteenmäki11648581977
Kalyanmoy Deb112713122802
Riitta Hari11149143873
Robin I. M. Dunbar11158647498
Andreas Richter11076948262
Mika Sillanpää96101944260
Muhammad Farooq92134137533
Ivo Babuška9037641465
Merja Penttilä8730322351
Andries Meijerink8742629335
T. Poutanen8612033158
Sajal K. Das85112429785
Kalle Lyytinen8442627708
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

95% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022342
20212,842
20203,030
20192,749
20182,719