scispace - formally typeset
Search or ask a question
Institution

Aalto University

EducationEspoo, Finland
About: Aalto University is a education organization based out in Espoo, Finland. It is known for research contribution in the topics: Population & Carbon nanotube. The organization has 9969 authors who have published 32648 publications receiving 829626 citations. The organization is also known as: TKK & Aalto-korkeakoulu.


Papers
More filters
Journal ArticleDOI
TL;DR: It is illustrated that program visualization systems for beginners are often short-lived research prototypes that support the user-controlled viewing of program animations; a recent trend is to support more engaging modes of user interaction.
Abstract: This article is a survey of program visualization systems intended for teaching beginners about the runtime behavior of computer programs. Our focus is on generic systems that are capable of illustrating many kinds of programs and behaviors. We inclusively describe such systems from the last three decades and review findings from their empirical evaluations. A comparable review on the topic does not previously exist; ours is intended to serve as a reference for the creators, evaluators, and users of educational program visualization systems. Moreover, we revisit the issue of learner engagement which has been identified as a potentially key factor in the success of educational software visualization and summarize what little is known about engagement in the context of the generic program visualization systems for beginners that we have reviewed; a proposed refinement of the frameworks previously used by computing education researchers to rank types of learner engagement is a side product of this effort. Overall, our review illustrates that program visualization systems for beginners are often short-lived research prototypes that support the user-controlled viewing of program animations; a recent trend is to support more engaging modes of user interaction. The results of evaluations largely support the use of program visualization in introductory programming education, but research to date is insufficient for drawing more nuanced conclusions with respect to learner engagement. On the basis of our review, we identify interesting questions to answer for future research in relation to themes such as engagement, the authenticity of learning tasks, cognitive load, and the integration of program visualization into introductory programming pedagogy.

298 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +318 moreInstitutions (70)
TL;DR: In this article, the authors presented full-sky maps of the cosmic microwave background (CMB) and polarized synchrotron and thermal dust emission, derived from the third set of Planck frequency maps.
Abstract: We present full-sky maps of the cosmic microwave background (CMB) and polarized synchrotron and thermal dust emission, derived from the third set of Planck frequency maps. These products have significantly lower contamination from instrumental systematic effects than previous versions. The methodologies used to derive these maps follow closely those described in earlier papers, adopting four methods (Commander, NILC, SEVEM, and SMICA) to extract the CMB component, as well as three methods (Commander, GNILC, and SMICA) to extract astrophysical components. Our revised CMB temperature maps agree with corresponding products in the Planck 2015 delivery, whereas the polarization maps exhibit significantly lower large-scale power, reflecting the improved data processing described in companion papers; however, the noise properties of the resulting data products are complicated, and the best available end-to-end simulations exhibit relative biases with respect to the data at the few percent level. Using these maps, we are for the first time able to fit the spectral index of thermal dust independently over 3° regions. We derive a conservative estimate of the mean spectral index of polarized thermal dust emission of βd = 1.55 ± 0.05, where the uncertainty marginalizes both over all known systematic uncertainties and different estimation techniques. For polarized synchrotron emission, we find a mean spectral index of βs = −3.1 ± 0.1, consistent with previously reported measurements. We note that the current data processing does not allow for construction of unbiased single-bolometer maps, and this limits our ability to extract CO emission and correlated components. The foreground results for intensity derived in this paper therefore do not supersede corresponding Planck 2015 products. For polarization the new results supersede the corresponding 2015 products in all respects.

298 citations

Journal ArticleDOI
TL;DR: This work reports a nanotube-mode-locked all-fiber ultrafast oscillator emitting three wavelengths at the central wavelengths of about 1540, 1550, and 1560 nm, which are tunable by stretching fiber Bragg gratings, agreeing well with the numerical simulations.
Abstract: Multi-wavelength lasers have widespread applications (e.g. fiber telecommunications, pump-probe measurements, terahertz generation). Here, we report a nanotube-mode-locked all-fiber ultrafast oscillator emitting three wavelengths at the central wavelengths of about 1540, 1550 and 1560 nm, which are tunable by stretching fiber Bragg gratings. The output pulse duration is around 6 ps with a spectral width of ~0.5 nm, agreeing well with the numerical simulations. The triple-laser system is controlled precisely and insensitive to environmental perturbations with <0.04% amplitude fluctuation. Our method provides a simple, stable, low-cost, multi-wavelength ultrafast-pulsed source for spectroscopy, biomedical research and telecommunications.

298 citations

Journal ArticleDOI
TL;DR: In this article, the historical development and current state of data-driven materials science, building from the early evolution of open science to the rapid expansion of materials data frastructures are discussed.
Abstract: Data-driven science is heralded as a new paradigm in materials science. In this field, data is the new resource, and knowledge is extracted from materials datasets that are too big or complex for traditional human reasoning—typically with the intent to discover new or improved materials or materials phenomena. Multiple factors, including the open science movement, national funding, and progress in information technology, have fueled its development. Such related tools as materials databases, machine learning, and high-throughput methods are now established as parts of the materials research toolset. However, there are a variety of challenges that impede progress in data-driven materials science: data veracity, integration of experimental and computational data, data longevity, standardization, and the gap between industrial interests and academic efforts. In this perspective article, the historical development and current state of data-driven materials science, building from the early evolution of open science to the rapid expansion of materials data frastructures are discussed. Key successes and challenges so far are also reviewed, providing a perspective on the future development of the field.

296 citations

Journal ArticleDOI
TL;DR: In this article, a protocol is developed to estimate the trapping efficiency (TE) of the existing and planned reservoirs in the Mekong Basin based on Brune's method, and the existing reservoirs have a basin TE of 15-18% and should all the planned reservoirs be built, this will increase to 51-69%.

296 citations


Authors

Showing all 10135 results

NameH-indexPapersCitations
John B. Goodenough1511064113741
Ashok Kumar1515654164086
Anne Lähteenmäki11648581977
Kalyanmoy Deb112713122802
Riitta Hari11149143873
Robin I. M. Dunbar11158647498
Andreas Richter11076948262
Mika Sillanpää96101944260
Muhammad Farooq92134137533
Ivo Babuška9037641465
Merja Penttilä8730322351
Andries Meijerink8742629335
T. Poutanen8612033158
Sajal K. Das85112429785
Kalle Lyytinen8442627708
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

95% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022342
20212,842
20203,030
20192,749
20182,719