scispace - formally typeset
Search or ask a question
Institution

Aalto University

EducationEspoo, Finland
About: Aalto University is a education organization based out in Espoo, Finland. It is known for research contribution in the topics: Population & Carbon nanotube. The organization has 9969 authors who have published 32648 publications receiving 829626 citations. The organization is also known as: TKK & Aalto-korkeakoulu.


Papers
More filters
Journal ArticleDOI
TL;DR: Temporal motifs as discussed by the authors are classes of similar event sequences, where the similarity refers not only to topology but also to the temporal order of the events, and are used to represent systems where connections between elements are active only for restricted periods of time.
Abstract: Temporal networks are commonly used to represent systems where connections between elements are active only for restricted periods of time, such as telecommunication, neural signal processing, biochemical reaction and human social interaction networks. We introduce the framework of temporal motifs to study the mesoscale topological–temporal structure of temporal networks in which the events of nodes do not overlap in time. Temporal motifs are classes of similar event sequences, where the similarity refers not only to topology but also to the temporal order of the events. We provide a mapping from event sequences to coloured directed graphs that enables an efficient algorithm for identifying temporal motifs. We discuss some aspects of temporal motifs, including causality and null models, and present basic statistics of temporal motifs in a large mobile call network.

286 citations

Journal ArticleDOI
TL;DR: In this paper, the authors assess the cumulative impact of climate change and reservoir operation on the hydrology of the transboundary Mekong River within the next 20-30 years.
Abstract: . The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled the output of five general circulation models (GCMs) that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia) between the baseline (1982–1992) and projected time period (2032–2042) ranges from −11% to p15% for the wet season and −10% to p13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will increase the uncertainty of the estimated reservoir operation impacts: our results indicate that even the direction of the flow-related changes induced by climate change is partly unclear. Consequently, both dam planners and dam operators should pay closer attention to the cumulative impacts of climate change and reservoir operation on aquatic ecosystems, including the multibillion-dollar Mekong fisheries.

286 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a critical analysis of redox-flow technologies that can potentially fulfill cost requirements and enable large scale storage, mainly aqueous based systems, and provide a comprehensive overview of the status of those technologies, including advantages and weaknesses.

286 citations

Journal ArticleDOI
TL;DR: In this paper, a semiparametric frontier model that combines the DEA-type nonparametric frontier, which satisfies monotonicity and concavity, with the SFA-style stochastic homoskedastic composite error term is proposed.
Abstract: The field of productive efficiency analysis is currently divided between two main paradigms: the deterministic, nonparametric Data Envelopment Analysis (DEA) and the parametric Stochastic Frontier Analysis (SFA). This paper examines an encompassing semiparametric frontier model that combines the DEA-type nonparametric frontier, which satisfies monotonicity and concavity, with the SFA-style stochastic homoskedastic composite error term. To estimate this model, a new two-stage method is proposed, referred to as Stochastic Non-smooth Envelopment of Data (StoNED). The first stage of the StoNED method applies convex nonparametric least squares (CNLS) to estimate the shape of the frontier without any assumptions about its functional form or smoothness. In the second stage, the conditional expectations of inefficiency are estimated based on the CNLS residuals, using the method of moments or pseudolikelihood techniques. Although in a cross-sectional setting distinguishing inefficiency from noise in general requires distributional assumptions, we also show how these can be relaxed in our approach if panel data are available. Performance of the StoNED method is examined using Monte Carlo simulations.

285 citations

Proceedings ArticleDOI
18 Apr 2015
TL;DR: Recognizing the social importance of skin, visual design patterns to customize functional touch sensors and allow for a visually aesthetic appearance are shown, enabling new types of on-body devices.
Abstract: We propose iSkin, a novel class of skin-worn sensors for touch input on the body. iSkin is a very thin sensor overlay, made of biocompatible materials, and is flexible and stretchable. It can be produced in different shapes and sizes to suit various locations of the body such as the finger, forearm, or ear. Integrating capacitive and resistive touch sensing, the sensor is capable of detecting touch input with two levels of pressure, even when stretched by 30% or when bent with a radius of 0.5cm. Furthermore, iSkin supports single or multiple touch areas of custom shape and arrangement, as well as more complex widgets, such as sliders and click wheels. Recognizing the social importance of skin, we show visual design patterns to customize functional touch sensors and allow for a visually aesthetic appearance. Taken together, these contributions enable new types of on-body devices. This includes finger-worn devices, extensions to conventional wearable devices, and touch input stickers, all fostering direct, quick, and discreet input for mobile computing.

284 citations


Authors

Showing all 10135 results

NameH-indexPapersCitations
John B. Goodenough1511064113741
Ashok Kumar1515654164086
Anne Lähteenmäki11648581977
Kalyanmoy Deb112713122802
Riitta Hari11149143873
Robin I. M. Dunbar11158647498
Andreas Richter11076948262
Mika Sillanpää96101944260
Muhammad Farooq92134137533
Ivo Babuška9037641465
Merja Penttilä8730322351
Andries Meijerink8742629335
T. Poutanen8612033158
Sajal K. Das85112429785
Kalle Lyytinen8442627708
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

95% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022342
20212,842
20203,030
20192,749
20182,719