scispace - formally typeset
Search or ask a question
Institution

Agilent Technologies

CompanySanta Clara, California, United States
About: Agilent Technologies is a company organization based out in Santa Clara, California, United States. It is known for research contribution in the topics: Signal & Mass spectrometry. The organization has 7398 authors who have published 11518 publications receiving 262410 citations. The organization is also known as: Agilent Technologies, Inc..


Papers
More filters
Journal ArticleDOI
TL;DR: This work provides concrete experimental evidence on the effect of SW NT-DNA binding on DNA functionality, which will help to pave the way for future designing of SWNT biocomplexes for applications in biotechnology in general and also DNA-assisted nanotube manipulation techniques.
Abstract: We report the fabrication of single-walled carbon nanotube (SWNT) DNA sensors and the sensing mechanism The simple and generic protocol for label-free detection of DNA hybridization is demonstrated with random sequence 15mer and 30mer oligonucleotides DNA hybridization on gold electrodes, instead of on SWNT sidewalls, is mainly responsible for the acute electrical conductance change due to the modulation of energy level alignment between SWNT and gold contact This work provides concrete experimental evidence on the effect of SWNT-DNA binding on DNA functionality, which will help to pave the way for future designing of SWNT biocomplexes for applications in biotechnology in general and also DNA-assisted nanotube manipulation techniques

468 citations

Patent
12 Apr 1999
TL;DR: An apparatus for reporting a patient's health parameter to a remote data management center is described in this paper. But it does not specify how to report the parameters of a patient to a data management unit.
Abstract: An apparatus for reporting a patient's health parameter to a remote data management center. The apparatus has measurement units and a home hub. A measurement unit includes a sensor for sensing measurements of a health parameter and a transmitter for transmitting wirelessly data derived from the measurements. The home hub receives the wireless transmission of measurement data, processes the measurement unit data for effecient transfer, and transmits selectively data processed by thereby via public a data transmission network to a health data management unit.

455 citations

Journal ArticleDOI
TL;DR: By measuring the resonant wavelength of a two-dimensional photonic crystal microcavity, a time-resolved sensing capability is demonstrated that can detect the change in refractive index of 0.002.
Abstract: We report an experimental demonstration of an ultracompact biochemical sensor based on a two-dimensional photonic crystal microcavity. The microcavity, fabricated on a silicon-on-insulator substrate, is designed to have a resonant wavelength (λ) near 1.5 µm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.0 to n=1.5. From observation of the shift in resonant wavelength, a change in ambient refractive index of Δn=0.002 is readily apparent. The correspondence between absolute refractive index and resonant wavelength agrees with numerical calculation to within 4% accuracy. The evaporation of water in a 5% glycerol mixture is also used to demonstrate the capability for in situ time-resolved sensing.

454 citations

Proceedings ArticleDOI
01 Jan 2000
TL;DR: In this paper, a modification to the standard five element BVD model is proposed, in which a second resistor is added in series with the plate capacitance C/sub 0.
Abstract: Microwave Film Bulk Acoustic Resonators (FBARs) may be characterized by means of the Mason transmission line model, but for parameter extraction and design studies, the lumped Butterworth-Van Dyke (BVD) model is more useful. We propose a modification to the standard five element BVD model, in which a second resistor is added in series with the plate capacitance C/sub 0/. This improves the model predictions as compared to the data obtained from a network analyzer (NWA). Here, the modified model will be developed in terms of the resonant frequencies, effective coupling constant k/sub t//sup 2/, and the quality factor Q, as determined from the S parameters of an FBAR measured by the NWA. To evaluate the FBAR resonators on a routine basis, an automated data acquisition and parameter extraction method based on the Modified Butterworth-Van Dyke model (MBVD) is described. An Agilent Technologies 8753ES NWA operating under Personal Computer control is used to acquire and process FBAR data by means of a custom HPVEE/sup TM/ program, which transfers data from the NWA, and extracts the six MBVD circuit parameters. Excellent agreement is obtained between the measured data for a typical FBAR resonator and calculated "postdictions" obtained from the MBVD circuit. Coupled with the automated method, which takes about 10 seconds per resonator to perform a complete extraction cycle, a computer controlled probing station is used to acquire data from several hundred resonators on the wafer upon which the FBARS were fabricated. With this speed and probing capability, it is feasible to wafer map the FBARs for uniformity. Contour plots of the measured resonant frequency and coupling constant k/sub t//sup 2/ will be presented to illustrate the capability.

448 citations

Journal ArticleDOI
TL;DR: The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression.
Abstract: The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression.

426 citations


Authors

Showing all 7402 results

NameH-indexPapersCitations
Hongjie Dai197570182579
Zhuang Liu14953587662
Jie Liu131153168891
Thomas Quertermous10340552437
John E. Bowers102176749290
Roy G. Gordon8944931058
Masaru Tomita7667740415
Stuart Lindsay7434722224
Ron Shamir7431923670
W. Richard McCombie7114464155
Tomoyoshi Soga7139221209
Michael R. Krames6532118448
Shabaz Mohammed6418817254
Geert Leus6260919492
Giuseppe Gigli6154115159
Network Information
Related Institutions (5)
Technical University of Denmark
66.3K papers, 2.4M citations

80% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

80% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

80% related

Ghent University
111K papers, 3.7M citations

80% related

Purdue University
163.5K papers, 5.7M citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20228
2021142
2020157
2019168
2018164