scispace - formally typeset
Search or ask a question
Institution

Agilent Technologies

CompanySanta Clara, California, United States
About: Agilent Technologies is a company organization based out in Santa Clara, California, United States. It is known for research contribution in the topics: Signal & Mass spectrometry. The organization has 7398 authors who have published 11518 publications receiving 262410 citations. The organization is also known as: Agilent Technologies, Inc..


Papers
More filters
Journal ArticleDOI
TL;DR: The results provide practical guidance to choose the appropriate FC and P-value cutoffs when selecting a given number of DEGs and recommend the use of FC-ranking plus a non-stringent P cutoff as a straightforward and baseline practice in order to generate more reproducible DEG lists.
Abstract: Background Reproducibility is a fundamental requirement in scientific experiments. Some recent publications have claimed that microarrays are unreliable because lists of differentially expressed genes (DEGs) are not reproducible in similar experiments. Meanwhile, new statistical methods for identifying DEGs continue to appear in the scientific literature. The resultant variety of existing and emerging methods exacerbates confusion and continuing debate in the microarray community on the appropriate choice of methods for identifying reliable DEG lists.

404 citations

Journal ArticleDOI
TL;DR: Probe-design methods and assay protocols that make oligonucleotide microarrays synthesized in situ by inkjet technology compatible with array-based comparative genomic hybridization applications employing samples of total genomic DNA provide a robust and precise platform for detecting chromosomal alterations throughout a genome with high sensitivity even when using full-complexity genomic samples.
Abstract: Array-based comparative genomic hybridization (CGH) measures copy-number variations at multiple loci simultaneously, providing an important tool for studying cancer and developmental disorders and for developing diagnostic and therapeutic targets. Arrays for CGH based on PCR products representing assemblies of BAC or cDNA clones typically require maintenance, propagation, replication, and verification of large clone sets. Furthermore, it is difficult to control the specificity of the hybridization to the complex sequences that are present in each feature of such arrays. To develop a more robust and flexible platform, we created probe-design methods and assay protocols that make oligonucleotide microarrays synthesized in situ by inkjet technology compatible with array-based comparative genomic hybridization applications employing samples of total genomic DNA. Hybridization of a series of cell lines with variable numbers of X chromosomes to arrays designed for CGH measurements gave median ratios for X-chromosome probes within 6% of the theoretical values (0.5 for XY/XX, 1.0 for XX/XX, 1.4 for XXX/XX, 2.1 for XXXX/XX, and 2.6 for XXXXX/XX). Furthermore, these arrays detected and mapped regions of single-copy losses, homozygous deletions, and amplicons of various sizes in different model systems, including diploid cells with a chromosomal breakpoint that has been mapped and sequenced to a precise nucleotide and tumor cell lines with highly variable regions of gains and losses. Our results demonstrate that oligonucleotide arrays designed for CGH provide a robust and precise platform for detecting chromosomal alterations throughout a genome with high sensitivity even when using full-complexity genomic samples.

404 citations

Journal ArticleDOI
21 Jun 2007-Nature
TL;DR: The results indicate that murine and human tumours experience common biological processes driven by orthologous genetic events in their malignant evolution.
Abstract: Highly rearranged and mutated cancer genomes present major challenges in the identification of pathogenetic events driving the neoplastic transformation process. Here we engineered lymphoma-prone mice with chromosomal instability to assess the usefulness of mouse models in cancer gene discovery and the extent of cross-species overlap in cancer-associated copy number aberrations. Along with targeted re-sequencing, our comparative oncogenomic studies identified FBXW7 and PTEN to be commonly deleted both in murine lymphomas and in human T-cell acute lymphoblastic leukaemia/lymphoma (T-ALL). The murine cancers acquire widespread recurrent amplifications and deletions targeting loci syntenic to those not only in human T-ALL but also in diverse human haematopoietic, mesenchymal and epithelial tumours. These results indicate that murine and human tumours experience common biological processes driven by orthologous genetic events in their malignant evolution. The highly concordant nature of genomic events encourages the use of genomically unstable murine cancer models in the discovery of biological driver events in the human oncogenome.

392 citations

Journal ArticleDOI
TL;DR: It is shown that unmethylated regions (UMRs) seem to be formed during early embryogenesis, not as a result of CpG-ness, but rather through the recognition of specific sequence motifs closely associated with transcription start sites.
Abstract: CpG island-like sequences are commonly thought to provide the sole signals for designating constitutively unmethylated regions in the genome, thus generating open chromatin domains within a sea of global repression. Using a new database obtained from comprehensive microarray analysis, we show that unmethylated regions (UMRs) seem to be formed during early embryogenesis, not as a result of CpG-ness, but rather through the recognition of specific sequence motifs closely associated with transcription start sites. This same system probably brings about the resetting of pluripotency genes during somatic cell reprogramming. The data also reveal a new class of nonpromoter UMRs that become de novo methylated in a tissue-specific manner during development, and this process may be involved in gene regulation. In short, we show that UMRs are an important aspect of genome structure that have a dynamic role in development.

380 citations

Journal ArticleDOI
TL;DR: Insight is provided into the genetic basis for tocotrienol biosynthesis in plants and the ability to enhance the antioxidant content of crops by introduction of an enzyme that redirects metabolic flux is demonstrated.
Abstract: Tocotrienols are the primary form of vitamin E in seeds of most monocot plants, including cereals such as rice and wheat. As potent antioxidants, tocotrienols contribute to the nutritive value of cereal grains in human and livestock diets. cDNAs encoding homogentisic acid geranylgeranyl transferase (HGGT), which catalyzes the committed step of tocotrienol biosynthesis, were isolated from barley, wheat and rice seeds. Transgenic expression of the barley HGGT in Arabidopsis thaliana leaves resulted in accumulation of tocotrienols, which were absent from leaves of nontransformed plants, and a 10- to 15-fold increase in total vitamin E antioxidants (tocotrienols plus tocopherols). Overexpression of the barley HGGT in corn seeds resulted in an increase in tocotrienol and tocopherol content of as much as six-fold. These results provide insight into the genetic basis for tocotrienol biosynthesis in plants and demonstrate the ability to enhance the antioxidant content of crops by introduction of an enzyme that redirects metabolic flux.

376 citations


Authors

Showing all 7402 results

NameH-indexPapersCitations
Hongjie Dai197570182579
Zhuang Liu14953587662
Jie Liu131153168891
Thomas Quertermous10340552437
John E. Bowers102176749290
Roy G. Gordon8944931058
Masaru Tomita7667740415
Stuart Lindsay7434722224
Ron Shamir7431923670
W. Richard McCombie7114464155
Tomoyoshi Soga7139221209
Michael R. Krames6532118448
Shabaz Mohammed6418817254
Geert Leus6260919492
Giuseppe Gigli6154115159
Network Information
Related Institutions (5)
Technical University of Denmark
66.3K papers, 2.4M citations

80% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

80% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

80% related

Ghent University
111K papers, 3.7M citations

80% related

Purdue University
163.5K papers, 5.7M citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20228
2021142
2020157
2019168
2018164