scispace - formally typeset
Search or ask a question
Institution

Agilent Technologies

CompanySanta Clara, California, United States
About: Agilent Technologies is a company organization based out in Santa Clara, California, United States. It is known for research contribution in the topics: Signal & Mass spectrometry. The organization has 7398 authors who have published 11518 publications receiving 262410 citations. The organization is also known as: Agilent Technologies, Inc..


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the use of nanofiltration membrane with pre-ozonation for surface water brine treatment was shown to significantly reduce organic fouling potential, and the dominant fouling mechanism was cake filtration.

70 citations

Patent
26 Apr 2002
TL;DR: In this paper, a block is transmitted from a basestation to a terminal, at least two independent signals that comprise at least a channel distorted version of the transmitted block are generated.
Abstract: The present invention is related to a system and method for wideband multiple access telecommunication. In the method, a block is transmitted from a basestation to a terminal. The block comprises a plurality of chip symbols scrambled with a base station specific scrambling code, the plurality of chip symbols comprising a plurality of spread user specific data symbols which are user specific data symbols spread by using user specific spreading codes and at least one pilot symbol. In the terminal, at least two independent signals that comprise at least a channel distorted version of the transmitted block are generated. The two independent signals are combined with a combiner filter with filter coefficients which are determined by using the pilot symbol, thus a combined filtered signal is obtained. The combined filtered signal is despread and descrambled with a composite code of the basestation specific scrambling code and one of the user specific codes.

70 citations

Journal ArticleDOI
TL;DR: The theoretical and practical aspects of LC/HRMS as it relates to the quantitation of drugs in plasma, which is the most commonly used matrix in pharmacokinetics studies are investigated, and the overall selectivity of HRMS is evaluated.
Abstract: There is a growing interest in exploring the use of liquid chromatography coupled with full-scan high resolution accurate mass spectrometry (LC/HRMS) in bioanalytical laboratories as an alternative to the current practice of using LC coupled with tandem mass spectrometry (LC/MS/MS). Therefore, we have investigated the theoretical and practical aspects of LC/HRMS as it relates to the quantitation of drugs in plasma, which is the most commonly used matrix in pharmacokinetics studies. In order to assess the overall selectivity of HRMS, we evaluated the potential interferences from endogenous plasma components by analyzing acetonitrile-precipitated blank human plasma extract using an LC/HRMS system under chromatographic conditions typically used for LC/MS/MS bioanalysis with the acquisition of total ion chromatograms (TICs) using 10 k and 20 k resolving power in both profile and centroid modes. From each TIC, we generated extracted ion chromatograms (EICs) of the exact masses of the [M + H]+ ions of 153 model drugs using different mass extraction windows (MEWs) and determined the number of plasma endogenous peaks detected in each EIC. Fewer endogenous peaks are detected using higher resolving power, narrower MEW, and centroid mode. A 20 k resolving power can be considered adequate for the selective determination of drugs in plasma. To achieve desired analyte EIC selectivity and simultaneously avoid missing data points in the analyte EIC peak, the MEW used should not be too wide or too narrow and should be a small fraction of the full width at half maximum (FWHM) of the profile mass peak. It is recommended that the optimum MEW be established during method development under the specified chromatographic and sample preparation conditions. In general, the optimum MEW, typically ≤ ±20 ppm for 20 k resolving power, is smaller for the profile mode when compared with the centroid mode. Copyright © 2011 John Wiley & Sons, Ltd.

70 citations

Patent
12 Nov 2004
TL;DR: In this article, the authors proposed a method for assaying cells using cell-substrate impedance monitoring. But, the method is limited to detecting changes in cell behavior or state, such as cytotoxicity assays.
Abstract: The present invention includes devices, systems, and methods for assaying cells using cell-substrate impedance monitoring. In one aspect, the invention provides cell-substrate impedance monitoring devices that comprise electrode arrays on a nonconducting substrate, in which each of the arrays has an approximately uniform electrode resistance across the entire array. In another aspect, the invention provides cell-substrate monitoring systems comprising one or more cell-substrate monitoring devices comprising multiple wells each having an electrode array, an impedance analyzer, a device station that connects arrays of individual wells to the impedance analyzer, and software for controlling the device station and impedance analyzer. In another aspect, the invention provides cellular assays that use impedance monitoring to detect changes in cell behavior or state. In some preferred aspects, the assays are designed to investigate the affects of compounds on cells, such as cytotoxicity assays. In other preferred aspects, the assays are designed to investigate the compounds that effect IgE-mediated responses of cells to antigens.

70 citations

Patent
06 May 2003
TL;DR: In this article, the authors present methods and kits for labeling nucleic acids, where an oligonucleotide tagged target nucleic acid is first generated and then contacted under hybridization conditions with a labeled oligon nucleotide complementary to the oligonotide tag.
Abstract: Methods and kits for labeling nucleic acids are provided. In the subject methods, an oligonucleotide tagged nucleic acid comprising an oligonucleotide tag is first generated. The oligonucleotide tagged nucleic acid is then contacted under hybridization conditions with a labeled oligonucleotide complementary to the oligonucleotide tag, yielding a labeled nucleic acid. The kits of the subject invention at least include a primer for use in enzymatically generating an oligonucleotide tagged target nucleic acid, where the primer generally at least includes an oligo dT region and the oligonucleotide tag, and a labeled oligonucleotide complementary to the oligonucleotide tag. The subject methods and kits find use in a variety of applications, and are particularly suited for use in gene expression analysis applications.

70 citations


Authors

Showing all 7402 results

NameH-indexPapersCitations
Hongjie Dai197570182579
Zhuang Liu14953587662
Jie Liu131153168891
Thomas Quertermous10340552437
John E. Bowers102176749290
Roy G. Gordon8944931058
Masaru Tomita7667740415
Stuart Lindsay7434722224
Ron Shamir7431923670
W. Richard McCombie7114464155
Tomoyoshi Soga7139221209
Michael R. Krames6532118448
Shabaz Mohammed6418817254
Geert Leus6260919492
Giuseppe Gigli6154115159
Network Information
Related Institutions (5)
Technical University of Denmark
66.3K papers, 2.4M citations

80% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

80% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

80% related

Ghent University
111K papers, 3.7M citations

80% related

Purdue University
163.5K papers, 5.7M citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20228
2021142
2020157
2019168
2018164