scispace - formally typeset
Search or ask a question
Institution

Agilent Technologies

CompanySanta Clara, California, United States
About: Agilent Technologies is a company organization based out in Santa Clara, California, United States. It is known for research contribution in the topics: Signal & Mass spectrometry. The organization has 7398 authors who have published 11518 publications receiving 262410 citations. The organization is also known as: Agilent Technologies, Inc..


Papers
More filters
Patent
10 Jun 1999
TL;DR: A variety of enhancements to a time synchronization protocol for a distributed system (10) or (100) including techniques for improving accuracy by separating a unique timing point (52) from a delimiter 54 for the timing data packet (18) are discussed in this article.
Abstract: A variety of enhancements to a time synchronization protocol for a distributed system(10) or (100) including techniques for improving accuracy by separating a unique timing point (52) from a delimiter 54 for the timing data packet (18). The enhancements include techniques that compensate for jitter associated with communication circuitry in the distributed system (10) or (100) including jitter associated with physical interfaces and gateways in the distributed system. These techniques may involve specialized circuitry in the communication circuitry to compensate for jitter or special processing of received timing data packets or the introduction of follow up packets (16) that inform receiving nodes of measured jitter or a combination of these techniques.

60 citations

Journal ArticleDOI
TL;DR: The physico-chemical properties reported on in this paper provide a significant extension to the range of data available, hereby providing useful data to practical as well as theoretical chromatographers investigating the limits of modern day HPLC.

60 citations

Journal ArticleDOI
TL;DR: The range of compound classes detected and different PFAS signatures between sample locations demonstrate the need for expanded quantitation lists when investigating PFAS, especially newer classes in aqueous environmental samples.
Abstract: A quantitative method for the determination of per- and polyfluoroalkyl substances (PFAS) using liquid chromatography (LC) tandem mass spectrometry (MS/MS) was developed and applied to aqueous wastewater, surface water, and drinking water samples. Fifty-three PFAS from 14 compound classes (including many contaminants of emerging concern) were measured using a single analytical method. After solid-phase extraction using weak anion exchange cartridges, method detection limits in water ranged from 0.28 to 18 ng/L and method quantitation limits ranged from 0.35 to 26 ng/L. Method accuracy ranged from 70 to 127% for 49 of the 53 extracted PFAS, with the remaining four between 66 and 138%. Method precision ranged from 2 to 28% RSD, with 49 out of the 53 PFAS being below 50 PFAS, many of which are currently unregulated in the environment and not included in typical analytical lists, this method has efficiency advantages over other similar methods as it utilizes a single chromatographic separation with a shorter runtime (14 min), while maintaining method accuracy and stability and the separation of branched and linear PFAS isomers. The method was applied to wastewater influent and effluent; surface water from a river, wetland, and lake; and drinking water samples to survey PFAS contamination in Australian aqueous matrices. The compound classes FTCAs, FOSAAs, PFPAs, and diPAPs were detected for the first time in Australian WWTPs and the method was used to quantify PFAS concentrations from 0.60 to 193 ng/L. The range of compound classes detected and different PFAS signatures between sample locations demonstrate the need for expanded quantitation lists when investigating PFAS, especially newer classes in aqueous environmental samples.

60 citations

Journal ArticleDOI
TL;DR: 846 terpecurcumins (terpene-conjugated curcuminoids) were discovered from turmeric, including a number of potentially novel compounds, and two unprecedented compounds were identified by NMR spectroscopy.
Abstract: To fully understand the chemical diversity of an herbal medicine is challenging. In this work, we describe a new approach to globally profile and discover novel compounds from an herbal extract using multiple neutral loss/precursor ion scanning combined with substructure recognition and statistical analysis. Turmeric (the rhizomes of Curcuma longa L.) was used as an example. This approach consists of three steps: (i) multiple neutral loss/precursor ion scanning to obtain substructure information; (ii) targeted identification of new compounds by extracted ion current and substructure recognition; and (iii) untargeted identification using total ion current and multivariate statistical analysis to discover novel structures. Using this approach, 846 terpecurcumins (terpene-conjugated curcuminoids) were discovered from turmeric, including a number of potentially novel compounds. Furthermore, two unprecedented compounds (terpecurcumins X and Y) were purified, and their structures were identified by NMR spectros...

60 citations

Journal ArticleDOI
30 Apr 2007
TL;DR: The basic periodic steady-state problem is examined and examples and linear algebra abstractions are provided to demonstrate connections between seemingly dissimilar methods and to try to provide a more general framework for fast methods than the standard time-versus-frequency domain characterization of finite-difference, basis-collocation, and shooting methods.
Abstract: Designers of RF circuits such as power amplifiers, mixers, and filters make extensive use of simulation tools which perform periodic steady-state analysis and its extensions, but until the mid 1990s, the computational costs of these simulation tools restricted designers from simulating the behavior of complete RF subsystems. The introduction of fast matrix-implicit iterative algorithms completely changed this situation, and extensions of these fast methods are providing tools which can perform periodic, quasi-periodic, and periodic noise analysis of circuits with thousands of devices. Even though there are a number of research groups continuing to develop extensions of matrix-implicit methods, there is still no compact characterization which introduces the novice researcher to the fundamental issues. In this paper, we examine the basic periodic steady-state problem and provide both examples and linear algebra abstractions to demonstrate connections between seemingly dissimilar methods and to try to provide a more general framework for fast methods than the standard time-versus-frequency domain characterization of finite-difference, basis-collocation, and shooting methods

59 citations


Authors

Showing all 7402 results

NameH-indexPapersCitations
Hongjie Dai197570182579
Zhuang Liu14953587662
Jie Liu131153168891
Thomas Quertermous10340552437
John E. Bowers102176749290
Roy G. Gordon8944931058
Masaru Tomita7667740415
Stuart Lindsay7434722224
Ron Shamir7431923670
W. Richard McCombie7114464155
Tomoyoshi Soga7139221209
Michael R. Krames6532118448
Shabaz Mohammed6418817254
Geert Leus6260919492
Giuseppe Gigli6154115159
Network Information
Related Institutions (5)
Technical University of Denmark
66.3K papers, 2.4M citations

80% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

80% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

80% related

Ghent University
111K papers, 3.7M citations

80% related

Purdue University
163.5K papers, 5.7M citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20228
2021142
2020157
2019168
2018164