scispace - formally typeset
Search or ask a question
Institution

Agilent Technologies

CompanySanta Clara, California, United States
About: Agilent Technologies is a company organization based out in Santa Clara, California, United States. It is known for research contribution in the topics: Signal & Mass spectrometry. The organization has 7398 authors who have published 11518 publications receiving 262410 citations. The organization is also known as: Agilent Technologies, Inc..


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, single-mode selection of the DFB grating and variability in threshold, slope efficiency, and output power of different lasers in the array are investigated for their performance characteristics.
Abstract: DFB quantum cascade laser (DFB-QCL) arrays operating between 8.7 and 9.4 mum are investigated for their performance characteristics-single-mode selection of the DFB grating, and variability in threshold, slope efficiency, and output power of different lasers in the array. Single-mode selection refers to the ability to choose a desired mode/frequency of laser emission with a DFB grating. We apply a theoretical framework developed for general DFB gratings to analyze DFB-QCL arrays. We calculate how the performance characteristics of DFB-QCLs are affected by the coupling strength kappaL of the grating, and the relative position of the mirror facets at the ends of the laser cavity with respect to the grating. We discuss how single-mode selection can be improved by design. Several DFB-QCL arrays are fabricated and their performance examined. We achieve desired improvements in single-mode selection, and we observe the predicted variability in the threshold, slope efficiency, and output power of the DFB-QCLs. As a demonstration of potential applications, the DFB-QCL arrays are used to perform infrared absorption spectroscopy with fluids.

107 citations

Journal ArticleDOI
TL;DR: These studies demonstrate that a Deans switch can be an effective modulator provided that modulation ratios greater than approximately 2.5 are employed.
Abstract: A microfluidic Deans switch was used as a comprehensive two-dimensional gas chromatography (GC×GC) modulator. The simplicity and wide temperature range of the Deans switch make it a promising alternative to existing modulation techniques. However, the Deans switch is a low duty cycle modulator; that is, it samples only a small portion of the primary column effluent. Like all low duty cycle modulators, the Deans switch produces inconsistent transfer of components from the primary to the secondary column if the primary peaks are undersampled. Theoretical simulations and experimental studies show that the relative standard deviation (RSD) of the fraction of material transferred from the primary column to the secondary column is less than 1% if the modulation ratio is greater than 2.5. But the RSDs increase rapidly as the modulation ratio is decreased below 2.5. Deans switch GC×GC was validated by analyzing the aromatic content of gasoline. A fast analysis (<10 min) produced narrow primary peaks and a modulat...

107 citations

Journal ArticleDOI
TL;DR: In this benchmark study, 26 investigators were asked to characterize the kinetics and affinities of 10 sulfonamide inhibitors binding to the enzyme carbonic anhydrase II using Biacore optical biosensors, and the binding constants determined using the biosensor correlated well with solution-based titration calorimetry measurements.

107 citations

Journal ArticleDOI
TL;DR: In this paper, a unique approach combining biological manipulation with advanced imaging tools was presented to examine silica cell wall synthesis in the diatom Thalassiosira pseudonana, where distinct silica morphologies were observed during formation of different cell wall substructures and three different scales of structural organization were identified.
Abstract: We present a unique approach combining biological manipulation with advanced imaging tools to examine silica cell wall synthesis in the diatom Thalassiosira pseudonana. The innate capabilities of diatoms to form complex 3D silica structures on the nano- to micro-scale exceed current synthetic approaches because they use a fundamentally different formation process. Understanding the molecular details of the process requires identifying structural intermediates and correlating their formation with genes and proteins involved. This will aid in development of approaches to controllably alter structure, facilitating the use of diatoms as a direct source of nanostructured materials. In T. pseudonana, distinct silica morphologies were observed during formation of different cell wall substructures, and three different scales of structural organization were identified. At all levels, structure formation correlated with optimal design properties for the final product. These results provide a benchmark of measurements and new insights into biosilicification processes, potentially also benefiting biomimetic approaches.

107 citations

Journal ArticleDOI
TL;DR: The high-performance liquid chromatography techniques complement the 2D-gel techniques supporting their weaknesses, especially true for the gel separation of hydrophobic membrane proteins, which play an important role in living cells as well as being important targets for future pharmaceutical drugs.
Abstract: Today, 2D online or offline liquid chromatography/mass spectrometry is state of the art for the identification of proteins from complex proteome samples in many laboratories. Both 2D liquid chromatography methods use two orthogonal liquid chromatography separation techniques. The most commonly used techniques are strong cation exchange chromatography for the first dimension and reversed phase separation for the second dimension. In order to improve sensitivity the reversed phase separation is usually performed in the nanoflow scale and mass spectrometry is used as the final detection method. The high-performance liquid chromatography techniques complement the 2D-gel techniques supporting their weaknesses. This is especially true for the gel separation of hydrophobic membrane proteins, which play an important role in living cells as well as being important targets for future pharmaceutical drugs.

107 citations


Authors

Showing all 7402 results

NameH-indexPapersCitations
Hongjie Dai197570182579
Zhuang Liu14953587662
Jie Liu131153168891
Thomas Quertermous10340552437
John E. Bowers102176749290
Roy G. Gordon8944931058
Masaru Tomita7667740415
Stuart Lindsay7434722224
Ron Shamir7431923670
W. Richard McCombie7114464155
Tomoyoshi Soga7139221209
Michael R. Krames6532118448
Shabaz Mohammed6418817254
Geert Leus6260919492
Giuseppe Gigli6154115159
Network Information
Related Institutions (5)
Technical University of Denmark
66.3K papers, 2.4M citations

80% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

80% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

80% related

Ghent University
111K papers, 3.7M citations

80% related

Purdue University
163.5K papers, 5.7M citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20228
2021142
2020157
2019168
2018164