scispace - formally typeset
Search or ask a question
Institution

Agriculture and Agri-Food Canada

FacilityOttawa, Ontario, Canada
About: Agriculture and Agri-Food Canada is a facility organization based out in Ottawa, Ontario, Canada. It is known for research contribution in the topics: Population & Soil water. The organization has 10921 authors who have published 21332 publications receiving 748193 citations. The organization is also known as: Department of Agriculture and Agri-Food.
Topics: Population, Soil water, Manure, Tillage, Loam


Papers
More filters
Journal ArticleDOI
TL;DR: Phytase catalyses the release of phosphate from phytate, the predominant form of phosphorus in cereal grains, oilseeds and legumes, and activity was particularly prevalent in S. ruminantium, with over 96% of the tested strains being positive.
Abstract: Summary: Phytase catalyses the release of phosphate from phytate (myo-inositol hexakisphosphate), the predominant form of phosphorus in cereal grains, oilseeds and legumes. The presence of phytase activity was investigated in 334 strains of 22 species of obligately anaerobic ruminal bacteria. Measurable activities were demonstrated in strains of Selenomonas ruminantium, Megasphaera elsdenii, Prevotella ruminicola, Mitsuokella multiacidus and Treponema spp. Strains isolated from fermentations with cereal grains proved to have high activity, and activity was particularly prevalent in S. ruminantium, with over 96% of the tested strains being positive. The measured phytase activity was found exclusively associated with the bacterial cells and was produced in the presence of approximately 14 mM phosphate. The most highly active strains were all S. ruminantium, with the exception of the one Mitsuokella multiacidus strain examined. Phytase activity varied greatly among positive strains but activities as high as 703 nmol phosphate released (ml culture)-1 were measured for a S. ruminantium strain and 387 nmol phosphate released (ml culture)-1 for the Mitsuokella multiacidus strain.

210 citations

Journal ArticleDOI
TL;DR: Advances in computational tools, high-throughput sequencing technologies and cultivation-independent “omics” approaches continue to revolutionize the understanding of the rumen microbiome, which will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.
Abstract: The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security As the world population is predicted to reach approximately 97 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in "omic" data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies Advances in computational tools, high-throughput sequencing technologies and cultivation-independent "omics" approaches continue to revolutionize our understanding of the rumen microbiome This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges

210 citations

Journal ArticleDOI
TL;DR: The dominant structure of Krueo Ma Noy pectin was established as a 1,4-linked α-d -galacturonan by a combination of carboxyl reduction and methylation analysis, and confirmed by FT-IR spectroscopy.

209 citations

Journal ArticleDOI
TL;DR: Measure of size, through body size or mass, is the proxy easiest to use while providing good comparative values; however, care must be taken when using a single proxy, as proxies can be affected differently by rearing conditions of the parasitoid.
Abstract: Fitness, defined as the per capita rate of increase of a genotype with reference to the population carrying the associated genes, is a concept used by biologists to describe how well an individual performs in a population. Fitness: is rarely measured directly and biologists resort to proxies more easily measured but with varying connection to fitness. Size, progeny survival, and developmental rate are the most common proxies used in the literature to describe parasitoid fitness. The importance of the proxies varies between papers looking at evolutionary theories and those assessing ecological applications. The most direct measures of fitness for parasitoids are realised fecundity for females and mating ability for males, although these proxies are more difficult to measure under natural conditions. For practical purposes, measure of size, through body size or mass, is the proxy easiest to use while providing good comparative values; however, care must be taken when using a single proxy, as proxies can be affected differently by rearing conditions of the parasitoid. [KEYWORDS: LARVAL COMPETITION; QUALITY-CONTROL; CLUTCH SIZE; HOST; HYMENOPTERA; FIELD; SELECTION; WASP; SUPERPARASITISM; ICHNEUMONIDAE]

209 citations

Journal ArticleDOI
TL;DR: A study using 144 one-day-old Arbor Acres broilers was conducted to assess the effects of dried ginger root (Zingiber officinale) that was processed to particle sizes of 300, 149, 74, 37, and 8.4 μm on growth performance, antioxidant status, and serum metabolites of broiler chickens as mentioned in this paper.

209 citations


Authors

Showing all 10964 results

NameH-indexPapersCitations
Fereidoon Shahidi11995157796
Miao Liu11199359811
Xiang Li97147242301
Eviatar Nevo9584840066
Tim A. McAllister8586232409
Hubert Kolb8442025451
Daniel M. Weary8343722349
Karen A. Beauchemin8342322351
Nanthi Bolan8355031030
Oene Oenema8036123810
Santosh Kumar80119629391
Yueming Jiang7945220563
Denis A. Angers7625619321
Tong Zhu7247218205
Christophe Lacroix6935315860
Network Information
Related Institutions (5)
Agricultural Research Service
58.6K papers, 2.1M citations

95% related

United States Department of Agriculture
90.8K papers, 3.4M citations

92% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

90% related

University of Hohenheim
16.4K papers, 567.3K citations

90% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202282
20211,078
20201,035
2019992
2018988