scispace - formally typeset
Search or ask a question
Institution

Agriculture and Agri-Food Canada

FacilityOttawa, Ontario, Canada
About: Agriculture and Agri-Food Canada is a facility organization based out in Ottawa, Ontario, Canada. It is known for research contribution in the topics: Population & Soil water. The organization has 10921 authors who have published 21332 publications receiving 748193 citations. The organization is also known as: Department of Agriculture and Agri-Food.
Topics: Population, Soil water, Manure, Tillage, Loam


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of aspects related to starch granule size, including procedures for determining the size, the impact of granules size on the physicochemical characteristics of starch, and biosynthetic and environmental determinants of granule sizes.
Abstract: Granule size, size distribution and shape are among the most important morphologically distinguishing factors of starches from different origins. This article provides an overview of aspects related to starch granule size, including procedures for determining the size, the impact of granule size on the physicochemical characteristics of starch, and biosynthetic and environmental determinants of granule size. The focus is on small granule starches, including their isolation and current and potential utilization.

644 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared 11 Earth System Models (ESMs) to empirical data from the Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD).
Abstract: Stocks of soil organic carbon represent a large component of the carbon cycle that may participate in climate change feedbacks, particularly on decadal and centennial timescales. For Earth system models (ESMs), the ability to accurately represent the global distribution of existing soil carbon stocks is a prerequisite for accurately predicting future carbon–climate feedbacks. We compared soil carbon simulations from 11 model centers to empirical data from the Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). Model estimates of global soil carbon stocks ranged from 510 to 3040 Pg C, compared to an estimate of 1260 Pg C (with a 95% confidence interval of 890–1660 Pg C) from the HWSD. Model simulations for the high northern latitudes fell between 60 and 820 Pg C, compared to 500 Pg C (with a 95% confidence interval of 380–620 Pg C) for the NCSCD and 290 Pg C for the HWSD. Global soil carbon varied 5.9 fold across models in response to a 2.6-fold variation in global net primary productivity (NPP) and a 3.6-fold variation in global soil carbon turnover times. Model–data agreement was moderate at the biome level (R2 values ranged from 0.38 to 0.97 with a mean of 0.75); however, the spatial distribution of soil carbon simulated by the ESMs at the 1° scale was not well correlated with the HWSD (Pearson correlation coefficients less than 0.4 and root mean square errors from 9.4 to 20.8 kg C m−2). In northern latitudes where the two data sets overlapped, agreement between the HWSD and the NCSCD was poor (Pearson correlation coefficient 0.33), indicating uncertainty in empirical estimates of soil carbon. We found that a reduced complexity model dependent on NPP and soil temperature explained much of the 1° spatial variation in soil carbon within most ESMs (R2 values between 0.62 and 0.93 for 9 of 11 model centers). However, the same reduced complexity model only explained 10% of the spatial variation in HWSD soil carbon when driven by observations of NPP and temperature, implying that other drivers or processes may be more important in explaining observed soil carbon distributions. The reduced complexity model also showed that differences in simulated soil carbon across ESMs were driven by differences in simulated NPP and the parameterization of soil heterotrophic respiration (inter-model R2 = 0.93), not by structural differences between the models. Overall, our results suggest that despite fair global-scale agreement with observational data and moderate agreement at the biome scale, most ESMs cannot reproduce grid-scale variation in soil carbon and may be missing key processes. Future work should focus on improving the simulation of driving variables for soil carbon stocks and modifying model structures to include additional processes.

639 citations

Journal ArticleDOI
TL;DR: This study provides a first broad systematic treatment of the euagarics as they have recently emerged in phylogenetic systematics and recognizes eight major groups of homobasidiomycetes that cut across traditional lines of classification, in agreement with other recent phylogenetic studies.

612 citations

Journal ArticleDOI
TL;DR: Future research is likely to focus on aspects of delivery and the potential use of co-encapsulation methodologies, where two or more bioactive ingredients can be combined to have a synergistic effect.

610 citations

Journal ArticleDOI
17 Aug 2018-Science
TL;DR: This study leverages 850 wheat RNA-sequencing samples, alongside the annotated genome, to determine the similarities and differences between homoeolog expression across a range of tissues, developmental stages, and cultivars and suggests that the transposable elements in promoters relate more closely to the variation in the relative expression of homoeologicals across tissues than to a ubiquitous effect across all tissues.
Abstract: The coordinated expression of highly related homoeologous genes in polyploid species underlies the phenotypes of many of the world's major crops. Here we combine extensive gene expression datasets to produce a comprehensive, genome-wide analysis of homoeolog expression patterns in hexaploid bread wheat. Bias in homoeolog expression varies between tissues, with ~30% of wheat homoeologs showing nonbalanced expression. We found expression asymmetries along wheat chromosomes, with homoeologs showing the largest inter-tissue, inter-cultivar, and coding sequence variation, most often located in high-recombination distal ends of chromosomes. These transcriptionally dynamic genes potentially represent the first steps toward neo- or subfunctionalization of wheat homoeologs. Coexpression networks reveal extensive coordination of homoeologs throughout development and, alongside a detailed expression atlas, provide a framework to target candidate genes underpinning agronomic traits in wheat.

609 citations


Authors

Showing all 10964 results

NameH-indexPapersCitations
Fereidoon Shahidi11995157796
Miao Liu11199359811
Xiang Li97147242301
Eviatar Nevo9584840066
Tim A. McAllister8586232409
Hubert Kolb8442025451
Daniel M. Weary8343722349
Karen A. Beauchemin8342322351
Nanthi Bolan8355031030
Oene Oenema8036123810
Santosh Kumar80119629391
Yueming Jiang7945220563
Denis A. Angers7625619321
Tong Zhu7247218205
Christophe Lacroix6935315860
Network Information
Related Institutions (5)
Agricultural Research Service
58.6K papers, 2.1M citations

95% related

United States Department of Agriculture
90.8K papers, 3.4M citations

92% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

90% related

University of Hohenheim
16.4K papers, 567.3K citations

90% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202282
20211,078
20201,035
2019992
2018988