scispace - formally typeset
Search or ask a question
Institution

Agriculture and Agri-Food Canada

FacilityOttawa, Ontario, Canada
About: Agriculture and Agri-Food Canada is a facility organization based out in Ottawa, Ontario, Canada. It is known for research contribution in the topics: Population & Soil water. The organization has 10921 authors who have published 21332 publications receiving 748193 citations. The organization is also known as: Department of Agriculture and Agri-Food.
Topics: Population, Soil water, Manure, Tillage, Loam


Papers
More filters
Journal ArticleDOI
TL;DR: Levels of cnorB and nirS expression were relatively insensitive to pH values over the range of pH 6 to 8 but were substantially reduced at pH 5, whereas gene expression was sensitive to temperature, with induction and time to achieve maximum gene expression delayed as the temperature decreased from 30°C.
Abstract: Pseudomonas mandelii liquid cultures were studied to determine the effect of pH and temperature on denitrification gene expression, which was quantified by quantitative reverse transcription-PCR. Denitrification was measured by the accumulation of nitrous oxide (N2O) in the headspace in the presence of acetylene. Levels of gene expression of nirS and cnorB at pH 5 were 539-fold and 6,190-fold lower, respectively, than the levels of gene expression for cells grown at pH 6, 7, and 8 between 4 h and 8 h. Cumulative denitrification levels were 28 μmol, 63 μmol, and 22 μmol at pH 6, 7, and 8, respectively, at 8 h, whereas negligible denitrification was measured at pH 5. P. mandelii cells grown at 20°C and 30°C exhibited 9-fold and 94-fold increases in levels of cnorB expression between 0 h and 2 h, respectively, and an average 17-fold increase in levels of nirS gene expression. In contrast, induction of cnorB and nirS gene expression for P. mandelii cells grown at 10°C did not occur in the first 4 h. Levels of cumulative denitrification at 10 h were 6.6 μmol for P. mandelii cells grown at 10°C and 20°C and 30 μmol for cells grown at 30°C. Overall, levels of cnorB and nirS expression were relatively insensitive to pH values over the range of pH 6 to 8 but were substantially reduced at pH 5, whereas gene expression was sensitive to temperature, with induction and time to achieve maximum gene expression delayed as the temperature decreased from 30°C. Low pH and temperature negatively affected denitrification activity.

167 citations

Journal ArticleDOI
TL;DR: The pulling and severing of the spermatic cords are the most painful components of castration, yet altering the method of severing resulted in no change in call rate, suggesting welfare problems associated with castration may be better reduced by using non-surgical approaches, or by eliminating the need for castration in the first place.

167 citations

Journal ArticleDOI
07 Aug 2006-Genome
TL;DR: Linolenic acid and lipoxygenase loci did not overlap yield QTL, suggesting that it should be possible to develop high-yielding lines resistant to oxidative degradation by marker-assisted selection (MAS).
Abstract: Linolenic acid and seed lipoxygenases are associated with off flavours in soybean products. F5 recombinant inbred lines (RILs) from a cross between a low linolenic acid line (RG10) and a seed lipox...

167 citations

Book ChapterDOI
TL;DR: Li et al. as mentioned in this paper found that in most cases, crop yield is highly correlated with crop root mass almost in a linear shape, and the significance of roots becomes even more important on drylands, since the topsoil is often dry and nutrients are often unavailable, and plants need to extend their roots into deep layer to obtain available nutrients in the moist soil.
Abstract: Located in the northern territory of China, the vast semiarid and subhumid regions referred to as dryland areas are stressed by two major constraints for crop production: shortage of water supply and deficiency of nutrients in soil. Low precipitation and its uneven distribution have resulted in soil water, surface water and groundwater deficit, and made crops being under water stress in most cases. As a direct result, except for a few places that can conduct irrigation, most regions remain rainfed agriculture. In addition to shortage of water supply, serious wind and water erosion derived from sparse vegetation coverage, windy climate and frequent rainstorms plus human activities have led to serious soil degradation and nutrient stress. Deficiency of N can be found everywhere and that of P occurs at least in one third of the arable lands, this leading to low productivity. However, the limited water resources have not been fully used and the nutrient use efficiency by crops is very low, both having a certain potential for use and a large room for improvement. Management of water and nutrients are extremely important not only for crop production, but for environmental concern in these areas. Water and nutrients have great interactions that may gain either positive or negative effects on crop production, depending on crop growth stages, amounts, combinations and balance. In the dryland areas, the effect of nutrients and that of water are often limited to each other. Remarkable variations in precipitation from year to year significantly influence soil water and nutrient status, and so do the nutrient input effect. Nutrient input may obtain a good harvest in one year while a poor harvest in another. Considering the precipitation changes and taking effective measures to regulate nutrient supply, crops may not suffer from water limitation in a dry year and from nutrient deficiency in a wet year, and in this way we cannot lose the opportunity to obtain good harvest in both dry and wet year. Nutrient input is the key for crop production. Roots are essential for taking up water and nutrients to support crop growth, and the significance of roots becomes even more important on drylands, since the topsoil is often dry and nutrients are often unavailable, and plants need to extend their roots into deep layer to obtain available nutrients in the moist soil. It has been found that in most cases, crop yield is highly correlated with crop root mass almost in a linear shape. Addition of organic fertilizers can enhance soil organic matter, raise soil water storage capacity, reduce soil bulk density, and therefore create good conditions for root penetration into deep layer. Both organic and chemical fertilizer can provide nutrients for forming strong root system and for roots having a higher capacity to absorb nutrients and water, improve root activities such as raising the root synthetic ability of amino acids by rational N fertilization. Different nutrients have different functions on root growth and its distribution. Nutrient input is also essential for improvement of plant physiological activities. Regulating plant water status and osmotic pressure, increasing the activity of nitrate reductase in plant leaves and raising photosynthesis and transpiration intensity whereas decreasing evaporation constitute some important aspects. All these benefit plants in 224 Sheng-Xiu Li et al. Author's personal copy

167 citations

Journal ArticleDOI
21 Jul 2014-PLOS ONE
TL;DR: GBS is a powerful and useful approach, which will have many additional applications in oat breeding and genomic studies, and this methodology is efficient for genotyping a variety of species, including those with complex genomes.
Abstract: Advances in next-generation sequencing offer high-throughput and cost-effective genotyping alternatives, including genotyping-by-sequencing (GBS). Results have shown that this methodology is efficient for genotyping a variety of species, including those with complex genomes. To assess the utility of GBS in cultivated hexaploid oat (Avena sativa L.), seven bi-parental mapping populations and diverse inbred lines from breeding programs around the world were studied. We examined technical factors that influence GBS SNP calls, established a workflow that combines two bioinformatics pipelines for GBS SNP calling, and provided a nomenclature for oat GBS loci. The high-throughput GBS system enabled us to place 45,117 loci on an oat consensus map, thus establishing a positional reference for further genomic studies. Using the diversity lines, we estimated that a minimum density of one marker per 2 to 2.8 cM would be required for genome-wide association studies (GWAS), and GBS markers met this density requirement in most chromosome regions. We also demonstrated the utility of GBS in additional diagnostic applications related to oat breeding. We conclude that GBS is a powerful and useful approach, which will have many additional applications in oat breeding and genomic studies.

167 citations


Authors

Showing all 10964 results

NameH-indexPapersCitations
Fereidoon Shahidi11995157796
Miao Liu11199359811
Xiang Li97147242301
Eviatar Nevo9584840066
Tim A. McAllister8586232409
Hubert Kolb8442025451
Daniel M. Weary8343722349
Karen A. Beauchemin8342322351
Nanthi Bolan8355031030
Oene Oenema8036123810
Santosh Kumar80119629391
Yueming Jiang7945220563
Denis A. Angers7625619321
Tong Zhu7247218205
Christophe Lacroix6935315860
Network Information
Related Institutions (5)
Agricultural Research Service
58.6K papers, 2.1M citations

95% related

United States Department of Agriculture
90.8K papers, 3.4M citations

92% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

90% related

University of Hohenheim
16.4K papers, 567.3K citations

90% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202282
20211,078
20201,035
2019992
2018988