scispace - formally typeset
Search or ask a question
Institution

Agriculture and Agri-Food Canada

FacilityOttawa, Ontario, Canada
About: Agriculture and Agri-Food Canada is a facility organization based out in Ottawa, Ontario, Canada. It is known for research contribution in the topics: Population & Soil water. The organization has 10921 authors who have published 21332 publications receiving 748193 citations. The organization is also known as: Department of Agriculture and Agri-Food.
Topics: Population, Soil water, Manure, Tillage, Loam


Papers
More filters
Journal ArticleDOI
TL;DR: The addition of a progestin to a Co-Synch or Ovsynch regimen significantly improved pregnancy rates in heifers but not in cows, and progestin-based regimens that included EB consistently resulted in high pregnancy rates to fixed-time Al.

145 citations

Journal ArticleDOI
TL;DR: It is concluded that after 7-years of fertilization, soil bacterial diversity and community structure were shaped more by changes in soil pH rather than the direct effect of nutrient addition.
Abstract: Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007-2014) of applying chemical nitrogen, phosphorus and potassium (NPK) fertilizers, composted manure or their combination to acidic (pH 5.8), near-neutral (pH 6.8) or alkaline (pH 8.4) Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU) richness or Shannon diversity index, despite higher available N, P, K and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (%) of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%), Actinobacteria (19.7%), Chloroflexi (15.3%) and Acidobacteria (12.6%); the medium dominant phyla were Bacterioidetes (5.3%), Planctomycetes (4.8%), Gemmatimonadetes (4.5%), Firmicutes (3.4%), Cyanobacteria (2.1%), Nitrospirae (1.8%), and candidate division TM7 (1.0%); the least abundant phyla were Verrucomicrobia (0.7%), Armatimonadetes (0.6%), candidate division WS3 (0.4%) and Fibrobacteres (0.3%). In addition, Cyanobacteria and candidate division TM7 were more abundant in acidic soil, whereas more Gemmatimonadetes, Nitrospirae and candidate division WS3 were more abundant in alkaline soil. We conclude that after 7-years of fertilization, soil bacterial diversity and community structure were shaped more by changes in soil pH rather than the direct effect of nutrient addition.

145 citations

Journal ArticleDOI
TL;DR: The potential application of OSA-SMSS as a particle stabilizer of oil-in-water emulsion, which would allow encapsulate and protect functional food components, is revealed.

145 citations

Journal ArticleDOI
TL;DR: The physicochemical properties including in vitro starch digestibility and expected glycemic index (eGI) of bean flour and isolated bean starch from different cultivars grown in Canada were investigated.

145 citations

Journal ArticleDOI
TL;DR: In this article, a review of biotic and abiotic factors, and aspects of microbial antagonism, which can influence plant disease development in the root zone, are characterized in the context of conservation tillage in humid climates.
Abstract: The advent of conservation tillage presents a need for a greater understanding of plant disease and disease interactions in temperate humid agriculture, where excessive crop residues, continuous moist soil conditions and soil compaction are potential constraints. In this review, biotic and abiotic factors, and aspects of microbial antagonism, which can influence plant disease development in the root zone, are characterized in the context of conservation tillage in humid climates. Soil densification and reduction in macroporosity can aggravate abiotic root disease. Changes in soil aeration and permeability status can alter the quantitative and qualitative differences between soil rhizofloral populations, and survival and distribution of pathogen inoculum. Further-more, anaerobic soil conditions can result in root-pathogen interactions leading to plant disease development. A good quality soil physical environment is an important indicator for root health under conservation tillage in humid climates. Conservation tillage tends to concentrate plant debris and consequently microbial biomass in the top 5 to 15 cm of soil, and thus promotes survival of pathogens. However, disease-causing microbes make up only a proportion of the rhizofloral population. Relatively high soil microbial activity can lead to competition effects that may ameliorate pathogen activity and survival, and counteract a high pathogen inoculum pressure. Microbial antagonism in the root zone can lead to the formation of disease-suppressive soils. This phenomenon, which is important for the adoption of conservation tillage in humid climates, can be influenced by soil and crop management practices, especially crop rotation.

145 citations


Authors

Showing all 10964 results

NameH-indexPapersCitations
Fereidoon Shahidi11995157796
Miao Liu11199359811
Xiang Li97147242301
Eviatar Nevo9584840066
Tim A. McAllister8586232409
Hubert Kolb8442025451
Daniel M. Weary8343722349
Karen A. Beauchemin8342322351
Nanthi Bolan8355031030
Oene Oenema8036123810
Santosh Kumar80119629391
Yueming Jiang7945220563
Denis A. Angers7625619321
Tong Zhu7247218205
Christophe Lacroix6935315860
Network Information
Related Institutions (5)
Agricultural Research Service
58.6K papers, 2.1M citations

95% related

United States Department of Agriculture
90.8K papers, 3.4M citations

92% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

90% related

University of Hohenheim
16.4K papers, 567.3K citations

90% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202282
20211,078
20201,035
2019992
2018988