scispace - formally typeset
Search or ask a question
Institution

Agriculture and Agri-Food Canada

FacilityOttawa, Ontario, Canada
About: Agriculture and Agri-Food Canada is a facility organization based out in Ottawa, Ontario, Canada. It is known for research contribution in the topics: Population & Soil water. The organization has 10921 authors who have published 21332 publications receiving 748193 citations. The organization is also known as: Department of Agriculture and Agri-Food.
Topics: Population, Soil water, Manure, Tillage, Loam


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that the probability of gene flow from transgenic B. napus to R. raphanistrum to S. arvensis or E. gallicum is very low (<2–5 × 10–5) and transgenes can disperse in the environment via wild B. rapa in eastern Canada and possibly via commercial B.Rapa volunteers in western Canada.
Abstract: The frequency of gene flow from Brassica napus L. (canola) to four wild relatives, Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L. and Erucastrum gallicum (Willd.) O.E. Schulz, was assessed in greenhouse and/or field experiments, and actual rates measured in commercial fields in Canada. Various marker systems were used to detect hybrid individuals: herbicide resistance traits (HR), green fluorescent protein marker (GFP), species-specific amplified fragment length polymorphisms (AFLPs) and ploidy level. Hybridization between B. rapa and B. napus occurred in two field experiments (frequency approximately 7%) and in wild populations in commercial fields (approximately 13.6%). The higher frequency in commercial fields was most likely due to greater distance between B. rapa plants. All F1 hybrids were morphologically similar to B. rapa, had B. napus- and B. rapa-specific AFLP markers and were triploid (AAC, 2n = 29 chromosomes). They had reduced pollen viability (about 55%) and segregated for both self-incompatible and self-compatible individuals (the latter being a B. napus trait). In contrast, gene flow between R. raphanistrum and B. napus was very rare. A single R. raphanistrum × B. napus F1 hybrid was detected in 32,821 seedlings from the HR B. napus field experiment. The hybrid was morphologically similar to R. raphanistrum except for the presence of valves, a B. napus trait, in the distorted seed pods. It had a genomic structure consistent with the fusion of an unreduced gamete of R. raphanistrum and a reduced gamete of B. napus (RrRrAC, 2n = 37), both B. napus- and R. raphanistrum-specific AFLP markers, and had <1% pollen viability. No hybrids were detected in the greenhouse experiments (1,534 seedlings), the GFP field experiment (4,059 seedlings) or in commercial fields in Quebec and Alberta (22,114 seedlings). No S. arvensis or E. gallicum × B. napus hybrids were detected (42,828 and 21,841 seedlings, respectively) from commercial fields in Saskatchewan. These findings suggest that the probability of gene flow from transgenic B. napus to R. raphanistrum, S. arvensis or E. gallicum is very low (<2–5 × 10–5). However, transgenes can disperse in the environment via wild B. rapa in eastern Canada and possibly via commercial B. rapa volunteers in western Canada.

266 citations

Journal ArticleDOI
TL;DR: Concentrations of total ascorbate and glutathione and β-carotene in the chilling-sensitive line increased as the chilling treatment progressed and as the plants developed until they ultimately became either significantly higher or no different relative to the tolerant lines.
Abstract: Chilling temperatures increase the amounts of potentially lethal toxic oxygen compounds present within plants. These toxic oxygen compounds can be scavenged by antioxidant compounds such as ascorbate and β-carotene. Three developmental stages (first, third and fifth leaf) of four inbred lines of maize (Zea mays L.) exhibiting differential sensitivity to chilling were examined in order to determine if the chilling-sensitive line had lower concentrations of antioxidant compounds than did the tolerant lines. Plants were exposed to one of three treatments: (1) control (25°C constant), (2) control treatment plus a short-term chilling exposure of 11°C one day prior to harvesting, and (3) long-term (11°C constant) chilling exposure. Total ascorbate, total glutathione, β-carotene, α-tocopherol and chlorophyll contents were quantified, and ratios of dehydroascorbate/ascorbate and reduced/oxidized glutathione were determined. Lower concentrations of β-carotene were found in the chilling-sensitive relative to those in the chilling-tolerant lines for the first-leaf stage under both short- and long-term chilling treatments. Concentrations of total ascorbate and glutathione and β-carotene in the chilling-sensitive line increased as the chilling treatment progressed and as the plants developed until they ultimately became either significantly higher or no different relative to the tolerant lines. Results suggest that this sensitive line became less sensitive to chilling-induced oxidative stress with development.

266 citations

Journal ArticleDOI
TL;DR: A new vision for a global framework for MRV of SOC change is described, to support national and international initiatives seeking to effect change in the way the authors manage their soils.
Abstract: There is growing international interest in better managing soils to increase soil organic carbon (SOC) content to contribute to climate change mitigation, to enhance resilience to climate change and to underpin food security, through initiatives such as international ‘4p1000’ initiative and the FAO's Global assessment of SOC sequestration potential (GSOCseq) programme. Since SOC content of soils cannot be easily measured, a key barrier to implementing programmes to increase SOC at large scale, is the need for credible and reliable measurement/monitoring, reporting and verification (MRV) platforms, both for national reporting and for emissions trading. Without such platforms, investments could be considered risky. In this paper, we review methods and challenges of measuring SOC change directly in soils, before examining some recent novel developments that show promise for quantifying SOC. We describe how repeat soil surveys are used to estimate changes in SOC over time, and how long‐term experiments and space‐for‐time substitution sites can serve as sources of knowledge and can be used to test models, and as potential benchmark sites in global frameworks to estimate SOC change. We briefly consider models that can be used to simulate and project change in SOC and examine the MRV platforms for SOC change already in use in various countries/regions. In the final section, we bring together the various components described in this review, to describe a new vision for a global framework for MRV of SOC change, to support national and international initiatives seeking to effect change in the way we manage our soils.

266 citations

Journal ArticleDOI
TL;DR: Sequence analysis of Lr1 indicated that it is not related to the previously isolated Lr10 and Lr21 genes and unlike these genes, it is part of a large gene family.
Abstract: In hexaploid wheat, leaf rust resistance gene Lr1 is located at the distal end of the long arm of chromosome 5D. To clone this gene, an F1-derived doubled haploid population and a recombinant inbred line population from a cross between the susceptible cultivar AC Karma and the resistant line 87E03-S2B1 were phenotyped for resistance to Puccinia triticina race 1-1 BBB that carries the avirulence gene Avr1. A high-resolution genetic map of the Lr1 locus was constructed using microsatellite, resistance gene analog (RGA), BAC end (BE), and low pass (LP) markers. A physical map of the locus was constructed by screening a hexaploid wheat BAC library from cultivar Glenlea that is known to have Lr1. The locus comprised three RGAs from a gene family related to RFLP marker Xpsr567. Markers specific to each paralog were developed. Lr1 segregated with RGA567-5 while recombinants were observed for the other two RGAs. Transformation of the susceptible cultivar Fielder with RGA567-5 demonstrated that it corresponds to the Lr1 resistance gene. In addition, the candidate gene was also confirmed by virus-induced gene silencing. Twenty T 1 lines from resistant transgenic line T 0-938 segregated for resistance, partial resistance and susceptibility to Avr1 corresponding to a 1:2:1 ratio for a single hemizygous insertion. Transgene presence and expression correlated with the phenotype. The resistance phenotype expressed by Lr1 seemed therefore to be dependant on the zygosity status. T 3-938 sister lines with and without the transgene were further tested with 16 virulent and avirulent rust isolates. Rust reactions were all as expected for Lr1 thereby providing additional evidence toward the Lr1 identity of RGA567-5. Sequence analysis of Lr1 indicated that it is not related to the previously isolated Lr10 and Lr21 genes and unlike these genes, it is part of a large gene family.

265 citations

Journal ArticleDOI
TL;DR: Equivalencies derived from floral visitation rates and pollination percentages show that the most effective pollen-harvesters, Bombus spp.
Abstract: The pollination effectiveness (floral visitation rate, percentage of flowers pollinated, and pollen deposition) of indigenous and introduced bees visiting lowbush blueberry (Vaccinium angustifolium Aiton) was studied in Nova Scotia from 1992 to 1994. Floral visitation rate alone was not a good indicator of pollination effectiveness, as not all floral visits resulted in successful pollination events. As a group, pollen-harvesting taxa pollinated >85% of flowers visited as compared with under 25% for nectar foragers. Equivalencies derived from floral visitation rates and pollination percentages show that the most effective pollen-harvesters, Bombus spp. queens and Andrena spp., would pollinate 6.5 and 3.6 flowers, respectively, in the time it would take a nectar-foraging honey bee, Apis mellifera L., to pollinate a single flower. Average pollen deposition for nectar-foragers (A. mellifera and Megachile rotundata F.) did not exceed 13 tetrads per visit, which was significantly less than all pollen-h...

265 citations


Authors

Showing all 10964 results

NameH-indexPapersCitations
Fereidoon Shahidi11995157796
Miao Liu11199359811
Xiang Li97147242301
Eviatar Nevo9584840066
Tim A. McAllister8586232409
Hubert Kolb8442025451
Daniel M. Weary8343722349
Karen A. Beauchemin8342322351
Nanthi Bolan8355031030
Oene Oenema8036123810
Santosh Kumar80119629391
Yueming Jiang7945220563
Denis A. Angers7625619321
Tong Zhu7247218205
Christophe Lacroix6935315860
Network Information
Related Institutions (5)
Agricultural Research Service
58.6K papers, 2.1M citations

95% related

United States Department of Agriculture
90.8K papers, 3.4M citations

92% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

90% related

University of Hohenheim
16.4K papers, 567.3K citations

90% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202282
20211,078
20201,035
2019992
2018988