scispace - formally typeset
Search or ask a question

Showing papers by "Aix-Marseille University published in 2014"


Journal ArticleDOI
17 Jul 2014-Immunity
TL;DR: A set of standards encompassing three principles-the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation are described with the goal of unifying experimental standards for diverse experimental scenarios.

4,287 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed a general standardised and practical static digestion method based on physiologically relevant conditions that can be applied for various endpoints, which may be amended to accommodate further specific requirements.
Abstract: Simulated gastro-intestinal digestion is widely employed in many fields of food and nutritional sciences, as conducting human trials are often costly, resource intensive, and ethically disputable. As a consequence, in vitro alternatives that determine endpoints such as the bioaccessibility of nutrients and non-nutrients or the digestibility of macronutrients (e.g. lipids, proteins and carbohydrates) are used for screening and building new hypotheses. Various digestion models have been proposed, often impeding the possibility to compare results across research teams. For example, a large variety of enzymes from different sources such as of porcine, rabbit or human origin have been used, differing in their activity and characterization. Differences in pH, mineral type, ionic strength and digestion time, which alter enzyme activity and other phenomena, may also considerably alter results. Other parameters such as the presence of phospholipids, individual enzymes such as gastric lipase and digestive emulsifiers vs. their mixtures (e.g. pancreatin and bile salts), and the ratio of food bolus to digestive fluids, have also been discussed at length. In the present consensus paper, within the COST Infogest network, we propose a general standardised and practical static digestion method based on physiologically relevant conditions that can be applied for various endpoints, which may be amended to accommodate further specific requirements. A frameset of parameters including the oral, gastric and small intestinal digestion are outlined and their relevance discussed in relation to available in vivo data and enzymes. This consensus paper will give a detailed protocol and a line-by-line, guidance, recommendations and justifications but also limitation of the proposed model. This harmonised static, in vitro digestion method for food should aid the production of more comparable data in the future.

3,380 citations


Journal ArticleDOI
TL;DR: Mepolizumab administered either intravenously or subcutaneously significantly reduced asthma exacerbations and was associated with improvements in markers of asthma control and the safety profile of mepolIZumab was similar to that of placebo.
Abstract: BACKGROUND: Some patients with severe asthma have frequent exacerbations associated with persistent eosinophilic inflammation despite continuous treatment with high-dose inhaled glucocorticoids with or without oral glucocorticoids. METHODS: In this randomized, double-blind, double-dummy study, we assigned 576 patients with recurrent asthma exacerbations and evidence of eosinophilic inflammation despite high doses of inhaled glucocorticoids to one of three study groups. Patients were assigned to receive mepolizumab, a humanized monoclonal antibody against interleukin-5, which was administered as either a 75-mg intravenous dose or a 100-mg subcutaneous dose, or placebo every 4 weeks for 32 weeks. The primary outcome was the rate of exacerbations. Other outcomes included the forced expiratory volume in 1 second (FEV1) and scores on the St. George's Respiratory Questionnaire (SGRQ) and the 5-item Asthma Control Questionnaire (ACQ-5). Safety was also assessed. RESULTS: The rate of exacerbations was reduced by 47% (95% confidence interval [CI], 29 to 61) among patients receiving intravenous mepolizumab and by 53% (95% CI, 37 to 65) among those receiving subcutaneous mepolizumab, as compared with those receiving placebo (P<0.001 for both comparisons). Exacerbations necessitating an emergency department visit or hospitalization were reduced by 32% in the group receiving intravenous mepolizumab and by 61% in the group receiving subcutaneous mepolizumab. At week 32, the mean increase from baseline in FEV1 was 100 ml greater in patients receiving intravenous mepolizumab than in those receiving placebo (P=0.02) and 98 ml greater in patients receiving subcutaneous mepolizumab than in those receiving placebo (P=0.03). The improvement from baseline in the SGRQ score was 6.4 points and 7.0 points greater in the intravenous and subcutaneous mepolizumab groups, respectively, than in the placebo group (minimal clinically important change, 4 points), and the improvement in the ACQ-5 score was 0.42 points and 0.44 points greater in the two mepolizumab groups, respectively, than in the placebo group (minimal clinically important change, 0.5 points) (P<0.001 for all comparisons). The safety profile of mepolizumab was similar to that of placebo. CONCLUSIONS: Mepolizumab administered either intravenously or subcutaneously significantly reduced asthma exacerbations and was associated with improvements in markers of asthma control. (Funded by GlaxoSmithKline; MENSA ClinicalTrials.gov number, NCT01691521.).

1,680 citations


Journal ArticleDOI
TL;DR: Research criteria for SCD in pre‐mild cognitive impairment (MCI) are presented and a list of core features proposed for reporting in SCD studies is provided, which will enable comparability of research across different settings.
Abstract: There is increasing evidence that subjective cognitive decline (SCD) in individuals with unimpaired performance on cognitive tests may represent the first symptomatic manifestation of Alzheimer's disease (AD). The research on SCD in early AD, however, is limited by the absence of common standards. The working group of the Subjective Cognitive Decline Initiative (SCD-I) addressed this deficiency by reaching consensus on terminology and on a conceptual framework for research on SCD in AD. In this publication, research criteria for SCD in pre-mild cognitive impairment (MCI) are presented. In addition, a list of core features proposed for reporting in SCD studies is provided, which will enable comparability of research across different settings. Finally, a set of features is presented, which in accordance with current knowledge, increases the likelihood of the presence of preclinical AD in individuals with SCD. This list is referred to as SCD plus.

1,626 citations


Journal ArticleDOI
TL;DR: A combination of dabraenib and trametinib, as compared with dabrafenib alone, improved the rate of progression-free survival in previously untreated patients who had metastatic melanoma with BRAF V600E or V600K mutations.
Abstract: BACKGROUND Combined BRAF and MEK inhibition, as compared with BRAF inhibition alone, delays the emergence of resistance and reduces toxic effects in patients who have melanoma with BRAF V600E or V600K mutations. METHODS In this phase 3 trial, we randomly assigned 423 previously untreated patients who had unresectable stage IIIC or stage IV melanoma with a BRAF V600E or V600K mutation to receive a combination of dabrafenib (150 mg orally twice daily) and trametinib (2 mg orally once daily) or dabrafenib and placebo. The primary end point was progression-free survival. Secondary end points included overall survival, response rate, response duration, and safety. A preplanned interim overall survival analysis was conducted. RESULTS The median progression-free survival was 9.3 months in the dabrafenib–trametinib group and 8.8 months in the dabrafenib-only group (hazard ratio for progression or death in the dabrafenib–trametinib group, 0.75; 95% confidence interval [CI], 0.57 to 0.99; P = 0.03). The overall response rate was 67% in the dabrafenib–trametinib group and 51% in the dabrafenib-only group (P = 0.002). At 6 months, the interim overall survival rate was 93% with dabrafenib–trametinib and 85% with dabrafenib alone (hazard ratio for death, 0.63; 95% CI, 0.42 to 0.94; P = 0.02). However, a specified efficacy-stopping boundary (two-sided P = 0.00028) was not crossed. Rates of adverse events were similar in the two groups, although more dose modifications occurred in the dabrafenib–trametinib group. The rate of cutaneous squamous-cell carcinoma was lower in the dabrafenib–trametinib group than in the dabrafenib-only group (2% vs. 9%), whereas pyrexia occurred in more patients (51% vs. 28%) and was more often severe (grade 3, 6% vs. 2%) in the dabrafenib–trametinib group. CONCLUSIONS A combination of dabrafenib and trametinib, as compared with dabrafenib alone, improved the rate of progression-free survival in previously untreated patients who had metastatic melanoma with BRAF V600E or V600K mutations. (Funded by GlaxoSmithKline; Clinical Trials.gov number, NCT01584648.)

1,501 citations


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, Frederico Arroja4  +321 moreInstitutions (79)
TL;DR: In this article, the authors present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey.
Abstract: We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be ns = 0.968 ± 0.006 and tightly constrain its scale dependence to dns/ dlnk = −0.003 ± 0.007 when combined with the Planck lensing likelihood. When the Planck high-l polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r0.002< 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r< 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(φ) ∝ φ2 and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth over the range of scales 0.008 Mpc-1 ≲ k ≲ 0.1 Mpc-1. At large scales, each method finds deviations from a power law, connected to a deficit at multipoles l ≈ 20−40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Λ cold dark matter (ΛCDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is | αnon - adi | < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum findingthat the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations.

1,401 citations


Journal ArticleDOI
TL;DR: In this article, an atom-thin, ordered, two-dimensional multi-phase film was grown in situ through germanium molecular beam epitaxy using a gold surface as a substrate.
Abstract: We have grown an atom-thin, ordered, two-dimensional multi-phase film in situ through germanium molecular beam epitaxy using a gold (111) surface as a substrate. Its growth is similar to the formation of silicene layers on silver (111) templates. One of the phases, forming large domains, as observed in scanning tunneling microscopy, shows a clear, nearly flat, honeycomb structure. Thanks to thorough synchrotron radiation core-level spectroscopy measurements and advanced density functional theory calculations we can identify it as a ?3????3 R(30?) germanene layer in conjunction with a ?7????7 R(19.1?) Au(111) supercell, presenting compelling evidence of the synthesis of the germanium-based cousin of graphene on gold.

1,230 citations


Journal ArticleDOI
TL;DR: The 10th public data release (DR10) from the Sloan Digital Sky Survey (SDSS-III) was released in 2013 as mentioned in this paper, which includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopy data from Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July.
Abstract: The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the Tenth Public Data Release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R ~ 22,500 300 fiber spectrograph covering 1.514-1.696 μm. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the Milky Way. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included. DR10 also roughly doubles the number of BOSS spectra over those included in the Ninth Data Release. DR10 includes a total of 1,507,954 BOSS spectra comprising 927,844 galaxy spectra, 182,009 quasar spectra, and 159,327 stellar spectra selected over 6373.2 deg2.

1,188 citations


Journal ArticleDOI
Roel Aaij, Bernardo Adeva1, Marco Adinolfi2, A. Affolder3  +698 moreInstitutions (50)
TL;DR: The value of the ratio of branching fractions for the dilepton invariant mass squared range 1 < q(2) < 6 GeV(2)/c(4) is measured to be 0.745(-0.074)(+0.090)(stat) ± 0.036(syst).
Abstract: A measurement of the ratio of the branching fractions of the B+→K+μ+μ− and B+→K+e+e− decays is presented using proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb−1, recorded with the LHCb experiment at center-of-mass energies of 7 and 8 TeV. The value of the ratio of branching fractions for the dilepton invariant mass squared range 1

1,017 citations


Journal ArticleDOI
TL;DR: A concise database for BLAST using a Bio-Edit interface that can detect AR genetic determinants in bacterial genomes and can rapidly and easily discover putative new AR geneticeterminants is created.
Abstract: ARG-ANNOT (Antibiotic Resistance Gene-ANNOTation) is a new bioinformatic tool that was created to detect existing and putative new antibiotic resistance (AR) genes in bacterial genomes. ARG-ANNOT uses a local BLAST program in Bio-Edit software that allows the user to analyze sequences without a Web interface. All AR genetic determinants were collected from published works and online resources; nucleotide and protein sequences were retrieved from the NCBI GenBank database. After building a database that includes 1,689 antibiotic resistance genes, the software was tested in a blind manner using 100 random sequences selected from the database to verify that the sensitivity and specificity were at 100% even when partial sequences were queried. Notably, BLAST analysis results obtained using the rmtF gene sequence (a new aminoglycoside-modifying enzyme gene sequence that is not included in the database) as a query revealed that the tool was able to link this sequence to short sequences (17 to 40 bp) found in other genes of the rmt family with significant E values. Finally, the analysis of 178 Acinetobacter baumannii and 20 Staphylococcus aureus genomes allowed the detection of a significantly higher number of AR genes than the Resfinder gene analyzer and 11 point mutations in target genes known to be associated with AR. The average time for the analysis of a genome was 3.35 ± 0.13 min. We have created a concise database for BLAST using a Bio-Edit interface that can detect AR genetic determinants in bacterial genomes and can rapidly and easily discover putative new AR genetic determinants.

1,016 citations


Journal ArticleDOI
TL;DR: Current knowledge concerning the different strategies bacteria employ to resist the activities of polymyxins are summarized and increased understanding of these mechanisms is extremely vital and timely to facilitate studies of antimicrobial peptides and find new potential drugs targeting clinically relevant Gram-negative bacteria.
Abstract: Polymyxins are polycationic antimicrobial peptides that are currently the last-resort antibiotics for the treatment of multidrug-resistant, Gram-negative bacterial infections. The reintroduction of polymyxins for antimicrobial therapy has been followed by an increase in reports of resistance among Gram-negative bacteria. Some bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii, develop resistance to polymyxins in a process referred to as acquired resistance, whereas other bacteria, such as Proteus spp., Serratia spp. and Burkholderia spp., are naturally resistant to these drugs. Reports of polymyxin resistance in clinical isolates have recently increased, including acquired and intrinsically resistant pathogens. This increase is considered a serious issue, prompting concern due to the low number of currently available effective antibiotics. This review summarizes current knowledge concerning the different strategies bacteria employ to resist the activities of polymyxins. Gram-negative bacteria employ several strategies to protect themselves from polymyxin antibiotics (polymyxin B and colistin), including a variety of lipopolysaccharide (LPS) modifications, such as modifications of lipid A with phosphoethanolamine and 4-amino-4-deoxy-L-arabinose, in addition to the use of efflux pumps, the formation of capsules and overexpression of the outer membrane protein OprH, which are all effectively regulated at the molecular level. The increased understanding of these mechanisms is extremely vital and timely to facilitate studies of antimicrobial peptides and find new potential drugs targeting clinically relevant Gram-negative bacteria.

01 Nov 2014
TL;DR: In this paper, research criteria for subjective cognitive decline in individuals with unimpaired performance on cognitive tests may represent the first symptomatic manifestation of Alzheimer's disease (AD) are presented.
Abstract: There is increasing evidence that subjective cognitive decline (SCD) in individuals with unimpaired performance on cognitive tests may represent the first symptomatic manifestation of Alzheimer's disease (AD). The research on SCD in early AD, however, is limited by the absence of common standards. The working group of the Subjective Cognitive Decline Initiative (SCD-I) addressed this deficiency by reaching consensus on terminology and on a conceptual framework for research on SCD in AD. In this publication, research criteria for SCD in pre-mild cognitive impairment (MCI) are presented. In addition, a list of core features proposed for reporting in SCD studies is provided, which will enable comparability of research across different settings. Finally, a set of features is presented, which in accordance with current knowledge, increases the likelihood of the presence of preclinical AD in individuals with SCD. This list is referred to as SCD plus.

Journal ArticleDOI
TL;DR: It is found that embryonic precursor cells seeded the intestinal mucosa and demonstrated extensive in situ proliferation during the neonatal period, but these cells did not persist in the intestine of adult mice and were replaced around the time of weaning by the chemokine receptor CCR2–dependent influx of Ly6Chi monocytes that differentiated locally into mature, anti-inflammatory macrophages.
Abstract: The paradigm that macrophages that reside in steady-state tissues are derived from embryonic precursors has never been investigated in the intestine, which contains the largest pool of macrophages. Using fate-mapping models and monocytopenic mice, together with bone marrow chimera and parabiotic models, we found that embryonic precursor cells seeded the intestinal mucosa and demonstrated extensive in situ proliferation during the neonatal period. However, these cells did not persist in the intestine of adult mice. Instead, they were replaced around the time of weaning by the chemokine receptor CCR2-dependent influx of Ly6C(hi) monocytes that differentiated locally into mature, anti-inflammatory macrophages. This process was driven largely by the microbiota and had to be continued throughout adult life to maintain a normal intestinal macrophage pool.

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Yashar Akrami3, Yashar Akrami4  +310 moreInstitutions (70)
TL;DR: In this article, the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite were investigated.
Abstract: We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The “Cold Spot” is detected with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a posteriori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a significance that is dependent on the details of the approach. We perform the first examination of polarization data, finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations. Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and provide our most thorough view of the statistics of the CMB fluctuations to date.

Journal ArticleDOI
TL;DR: In this paper, a large-scale hydrodynamical cosmological simulation, Horizon-AGN, is used to investigate the alignment between the spin of galaxies and the largescale cosmic filaments above red-shift one.
Abstract: A large-scale hydrodynamical cosmological simulation, Horizon-AGN , is used to investigate the alignment between the spin of galaxies and the large-scale cosmic filaments above redshift one. The analysis of more than 150 000 galaxies with morphological diversity in a 100h −1 Mpc comoving box size shows that the spin of low-mass, rotationdominated, blue, star-forming galaxies is preferentially aligned with their neighbouring filaments. High-mass, dispersion-dominated, red, quiescent galaxies tend to have a spin perpendicular to nearby filaments. The reorientation of the spin of massive galaxies is provided by galaxy mergers which are significant in the mass build up of high-mass galaxies. We find that the stellar mass transition from alignment to misalignment happens around 3×10 10 M⊙. This is consistent with earlier findings of a dark matter mass transition for the orientation of the spin of halos (5 × 10 11 M⊙ at the same redshift from Codis et al. 2012). With these numerical evidence, we advocate a scenario in which galaxies form in the vorticity-rich neighbourhood of filaments, and migrate towards the nodes of the cosmic web as they convert their orbital angular momentum into spin. The signature of this process can be traced to the physical and morphological properties of galaxies, as measured relative to the cosmic web. We argue that a strong source of feedback such as Active Galactic Nuclei is mandatory to quench in situ star formation in massive galaxies. It allows mergers to play their key role by reducing post-merger gas inflows and, therefore, keeping galaxy spins misaligned with cosmic filaments. It also promotes diversity amongst galaxy properties.

Journal ArticleDOI
TL;DR: Increased BMI in adults of European origin is associated with increased methylation at the HIF3A locus in blood cells and in adipose tissue, and perturbation of hypoxia inducible transcription factor pathways could have an important role in the response to increased weight in people.

Journal ArticleDOI
01 Aug 2014-Brain
TL;DR: A taxonomy of seizures based on first principles is established and only five state variables linked by integral-differential equations are sufficient to describe the onset, time course and offset of ictal-like discharges as well as their recurrence.
Abstract: Seizures can occur spontaneously and in a recurrent manner, which defines epilepsy; or they can be induced in a normal brain under a variety of conditions in most neuronal networks and species from flies to humans. Such universality raises the possibility that invariant properties exist that characterize seizures under different physiological and pathological conditions. Here, we analysed seizure dynamics mathematically and established a taxonomy of seizures based on first principles. For the predominant seizure class we developed a generic model called Epileptor. As an experimental model system, we used ictal-like discharges induced in vitro in mouse hippocampi. We show that only five state variables linked by integral-differential equations are sufficient to describe the onset, time course and offset of ictal-like discharges as well as their recurrence. Two state variables are responsible for generating rapid discharges (fast time scale), two for spike and wave events (intermediate time scale) and one for the control of time course, including the alternation between ‘normal’ and ictal periods (slow time scale). We propose that normal and ictal activities coexist: a separatrix acts as a barrier (or seizure threshold) between these states. Seizure onset is reached upon the collision of normal brain trajectories with the separatrix. We show theoretically and experimentally how a system can be pushed toward seizure under a wide variety of conditions. Within our experimental model, the onset and offset of ictal-like discharges are well-defined mathematical events: a saddle-node and homoclinic bifurcation, respectively. These bifurcations necessitate a baseline shift at onset and a logarithmic scaling of interspike intervals at offset. These predictions were not only confirmed in our in vitro experiments, but also for focal seizures recorded in different syndromes, brain regions and species (humans and zebrafish). Finally, we identified several possible biophysical parameters contributing to the five state variables in our model system. We show that these parameters apply to specific experimental conditions and propose that there exists a wide array of possible biophysical mechanisms for seizure genesis, while preserving central invariant properties. Epileptor and the seizure taxonomy will guide future modeling and translational research by identifying universal rules governing the initiation and termination of seizures and predicting the conditions necessary for those transitions.

Journal ArticleDOI
TL;DR: This paper presents a meta-anatomy of the determinants of Macromolećules Biologiques, a probabilistic framework for estimating the number of components in a Response to Enzymology.
Abstract: Johnny Habchi,†,‡ Peter Tompa,* Sonia Longhi,†,‡,* and Vladimir N. Uversky* †Aix-Marseille Universite,́ Architecture et Fonction des Macromolećules Biologiques (AFMB), UMR 7257, 13288, Marseille, France ‡CNRS, Architecture et Fonction des Macromolećules Biologiques (AFMB), UMR 7257, 13288, Marseille, France VIB Department of Structural Biology, Vrije Universiteit Brussel, 1050 Ixelles, Belgium Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, H-1113, Hungary Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown  +282 moreInstitutions (70)
TL;DR: In this article, the authors presented cluster counts and corresponding cosmological constraints from the Planck full mission data set and extended their analysis to the two-dimensional distribution in redshift and signal-to-noise.
Abstract: We present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing of background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, (1−b). In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of (1−b) the tension is mild, only a little over one standard deviation, while it remains substantial (3.7σ) for the largest estimated value. We also examine constraints on extensions to the base flat ΛCDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. Improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base ΛCDM model.

Journal ArticleDOI
TL;DR: This review focused this review on current research concerning the role of the root exudate composition in ‘plant-microorganisms’ interactions and functioning of the rhizosphere.
Abstract: The root exudate composition reflects the contradictory-concomitantly attractive and repulsive-behaviour of plants towards soil microorganisms. Plants produce antimicrobial, insecticide and nematicide compounds to repel pathogens and invaders. They also produce border cells that detach from roots and play an important role as biological and physical barrier against aggressors. Plants produce also metabolites used as carbon source resulting in the attraction of phytobeneficial soil microorganisms that help plants in controlling diseases directly via the production of antimicrobial compounds or indirectly via the induction of plant systemic resistance. The root exudates may have a direct impact on carbon and nitrogen cycling, as they exhibit a rhizosphere priming effect towards soil organic matter degraders, and may inhibit nitrification process by soil nitrifying microorganisms. They also contain signalling molecules required for the establishment of ‘plant-microorganisms’ interactions. The composition of root exudates is therefore broad ranging, consisting of feeding, antimicrobial and signalling molecules. We thus focused this review on current research concerning the role of the root exudate composition in ‘plant-microorganisms’ interactions and functioning of the rhizosphere.

Journal ArticleDOI
TL;DR: This guideline provides recommendations for diagnostic and therapeutic procedures for patients with malignant gliomas and contributes to a critical appreciation of concurrent drugs with a focus on the controlled use of anticonvulsants and steroids.
Abstract: This guideline provides recommendations for diagnostic and therapeutic procedures for patients with malignant gliomas. We differentiate evidence-based standards from reasonable options or non-evidence-based measures that should no longer be considered. The recommendations herein should provide a framework and assurance for the choice of diagnostic procedures and therapeutic measures and aim to reduce complications from unnecessary treatment and cost. The guideline contributes to a critical appreciation of concurrent drugs with a focus on the controlled use of anticonvulsants and steroids. It should serve as a guideline for all professionals involved in the diagnostics and care of glioma patients and also as a source of knowledge for insurance companies and other institutions involved in the cost regulation of cancer care in Europe. Implementation of the recommendations summarised here will need interdisciplinary structures of care for patients with brain tumours and structured processes of diagnostic and therapeutic procedures.

Journal ArticleDOI
TL;DR: The results indicate that the prevailing paradigm of white rot vs. brown rot does not capture the diversity of fungal wood decay mechanisms, and suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay.
Abstract: Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.

Journal ArticleDOI
Geoffrey W. Marcy1, Howard Isaacson1, Andrew W. Howard2, Jason F. Rowe3, Jon M. Jenkins3, Stephen T. Bryson3, David W. Latham4, Steve B. Howell3, Thomas N. Gautier5, Natalie M. Batalha3, Leslie A. Rogers5, David R. Ciardi5, Debra A. Fischer6, Ronald L. Gilliland7, Hans Kjeldsen8, Jørgen Christensen-Dalsgaard8, Jørgen Christensen-Dalsgaard9, Daniel Huber3, William J. Chaplin8, William J. Chaplin10, Sarbani Basu6, Lars A. Buchhave4, Lars A. Buchhave11, Samuel N. Quinn4, William J. Borucki3, David G. Koch3, Roger C. Hunter3, Douglas A. Caldwell3, Jeffrey Van Cleve3, Rea Kolbl1, Lauren M. Weiss1, Erik A. Petigura1, Sara Seager12, Timothy D. Morton5, John Asher Johnson5, Sarah Ballard13, Christopher J. Burke3, William D. Cochran14, Michael Endl14, Phillip J. MacQueen14, Mark E. Everett, Jack J. Lissauer3, Eric B. Ford7, Guillermo Torres4, Francois Fressin4, Timothy M. Brown15, Jason H. Steffen16, David Charbonneau4, Gibor Basri1, Dimitar Sasselov4, Joshua N. Winn12, Roberto Sanchis-Ojeda12, Jessie L. Christiansen3, Elisabeth R. Adams17, Christopher E. Henze3, Andrea K. Dupree4, Daniel C. Fabrycky18, Jonathan J. Fortney19, Jill Tarter3, Matthew J. Holman4, Peter Tenenbaum3, Avi Shporer5, Philip W. Lucas20, William F. Welsh21, Jerome A. Orosz21, Timothy R. Bedding22, Tiago L. Campante8, Tiago L. Campante10, Guy R. Davies10, Guy R. Davies8, Y. P. Elsworth10, Y. P. Elsworth8, Rasmus Handberg10, Rasmus Handberg8, Saskia Hekker23, Saskia Hekker24, Christoffer Karoff8, Steven D. Kawaler25, Mikkel N. Lund8, Mia S. Lundkvist8, Travis S. Metcalfe26, Andrea Miglio8, Andrea Miglio10, V. Silva Aguirre8, Dennis Stello22, Timothy R. White22, Alan P. Boss27, Edna DeVore3, Alan Gould28, Andrej Prsa29, Eric Agol13, Thomas Barclay, Jeffrey L. Coughlin, Erik Brugamyer14, Fergal Mullally3, Elisa V. Quintana3, Martin Still, Susan E. Thompson3, David Morrison3, Joseph D. Twicken3, Jean-Michel Desert4, J. A. Carter12, Justin R. Crepp30, Guillaume Hébrard31, Guillaume Hébrard32, Alexandre Santerne33, Alexandre Santerne34, Claire Moutou, Charlie Sobeck3, Douglas Hudgins, Michael R. Haas3, Paul Robertson14, Paul Robertson7, Jorge Lillo-Box35, David Barrado35 
TL;DR: In this paper, the masses, sizes, and orbits of the planets orbiting 22 Kepler stars were reported, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars.
Abstract: We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm(-3), suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than similar to 2 R-circle plus. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).

Journal ArticleDOI
TL;DR: This tutorial review discusses how nanoplasmonics can benefit chemistry and review the most recent developments in this new and fast growing field of research.
Abstract: Noble metal nanoparticles supporting plasmonic resonances behave as efficient nanosources of light, heat and energetic electrons. Owing to these properties, they offer a unique playground to trigger chemical reactions on the nanoscale. In this tutorial review, we discuss how nanoplasmonics can benefit chemistry and review the most recent developments in this new and fast growing field of research.

Journal ArticleDOI
S. Chatrchyan, Khachatryan1, Albert M. Sirunyan, Armen Tumasyan  +2384 moreInstitutions (207)
26 May 2014
TL;DR: In this paper, a description of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices is provided.
Abstract: A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tt events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p_T > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p_T = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in p_T, and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.

Journal ArticleDOI
TL;DR: In this article, the authors considered the problem of finding a bounded increasing solution to the Laplacian problem in R n with respect to a local linear degenerate elliptic equation in R + n + 1 with a nonlinear Neumann boundary condition.
Abstract: This is the first of two articles dealing with the equation ( − Δ ) s v = f ( v ) in R n , with s ∈ ( 0 , 1 ) , where ( − Δ ) s stands for the fractional Laplacian — the infinitesimal generator of a Levy process. This equation can be realized as a local linear degenerate elliptic equation in R + n + 1 together with a nonlinear Neumann boundary condition on ∂ R + n + 1 = R n . In this first article, we establish necessary conditions on the nonlinearity f to admit certain type of solutions, with special interest in bounded increasing solutions in all of R . These necessary conditions (which will be proven in a follow-up paper to be also sufficient for the existence of a bounded increasing solution) are derived from an equality and an estimate involving a Hamiltonian — in the spirit of a result of Modica for the Laplacian. Our proofs are uniform as s ↑ 1 , establishing in the limit the corresponding known results for the Laplacian. In addition, we study regularity issues, as well as maximum and Harnack principles associated to the equation.

Journal ArticleDOI
13 Nov 2014-Nature
TL;DR: It is shown that the diversity of a species is predictable, and is determined in the first place by its ecological strategy, and demonstrates the influence of long-term life-history strategies on species response to short-term environmental perturbations.
Abstract: Genetic diversity is the amount of variation observed between DNA sequences from distinct individuals of a given species. This pivotal concept of population genetics has implications for species health, domestication, management and conservation. Levels of genetic diversity seem to vary greatly in natural populations and species, but the determinants of this variation, and particularly the relative influences of species biology and ecology versus population history, are still largely mysterious. Here we show that the diversity of a species is predictable, and is determined in the first place by its ecological strategy. We investigated the genome-wide diversity of 76 non-model animal species by sequencing the transcriptome of two to ten individuals in each species. The distribution of genetic diversity between species revealed no detectable influence of geographic range or invasive status but was accurately predicted by key species traits related to parental investment: long-lived or low-fecundity species with brooding ability were genetically less diverse than short-lived or highly fecund ones. Our analysis demonstrates the influence of long-term life-history strategies on species response to short-term environmental perturbations, a result with immediate implications for conservation policies.

Journal ArticleDOI
TL;DR: This episode represents the first evidence for the emergence of autochthonous chikungunya cases in the Americas, and has substantial potential for spreading from this region visited yearly by millions of tourists to the American mainland where A aegypti is endemic.

Journal ArticleDOI
07 Feb 2014-Science
TL;DR: The data validate the amelioration observed with bumetanide and oxytocin and point to common pathways in a drug-induced and a genetic rodent model of autism.
Abstract: We report that the oxytocin-mediated neuroprotective γ-aminobutyric acid (GABA) excitatory-inhibitory shift during delivery is abolished in the valproate and fragile X rodent models of autism. During delivery and subsequently, hippocampal neurons in these models have elevated intracellular chloride levels, increased excitatory GABA, enhanced glutamatergic activity, and elevated gamma oscillations. Maternal pretreatment with bumetanide restored in offspring control electrophysiological and behavioral phenotypes. Conversely, blocking oxytocin signaling in naive mothers produced offspring having electrophysiological and behavioral autistic-like features. Our results suggest a chronic deficient chloride regulation in these rodent models of autism and stress the importance of oxytocin-mediated GABAergic inhibition during the delivery process. Our data validate the amelioration observed with bumetanide and oxytocin and point to common pathways in a drug-induced and a genetic rodent model of autism.

Journal ArticleDOI
TL;DR: The present “white paper” catalogs the recommendations of the meeting, at which a consensus was reached that incorporation of molecular information into the next WHO classification of central nervous system tumors should follow a set of provided “ISN‐Haarlem” guidelines.
Abstract: Major discoveries in the biology of nervous system tumors have raised the question of how non-histological data such as molecular information can be incorporated into the next World Health Organization (WHO) classification of central nervous system tumors. To address this question, a meeting of neuropathologists with expertise in molecular diagnosis was held in Haarlem, the Netherlands, under the sponsorship of the International Society of Neuropathology (ISN). Prior to the meeting, participants solicited input from clinical colleagues in diverse neuro-oncological specialties. The present "white paper" catalogs the recommendations of the meeting, at which a consensus was reached that incorporation of molecular information into the next WHO classification should follow a set of provided "ISN-Haarlem" guidelines. Salient recommendations include that (i) diagnostic entities should be defined as narrowly as possible to optimize interobserver reproducibility, clinicopathological predictions and therapeutic planning; (ii) diagnoses should be "layered" with histologic classification, WHO grade and molecular information listed below an "integrated diagnosis"; (iii) determinations should be made for each tumor entity as to whether molecular information is required, suggested or not needed for its definition; (iv) some pediatric entities should be separated from their adult counterparts; (v) input for guiding decisions regarding tumor classification should be solicited from experts in complementary disciplines of neuro-oncology; and (iv) entity-specific molecular testing and reporting formats should be followed in diagnostic reports. It is hoped that these guidelines will facilitate the forthcoming update of the fourth edition of the WHO classification of central nervous system tumors.