scispace - formally typeset
Search or ask a question
Institution

Aix-Marseille University

EducationMarseille, France
About: Aix-Marseille University is a education organization based out in Marseille, France. It is known for research contribution in the topics: Population & Galaxy. The organization has 24326 authors who have published 54240 publications receiving 1455416 citations. The organization is also known as: University Aix-Marseille & université d'Aix-Marseille.


Papers
More filters
Journal ArticleDOI
23 Apr 2013-Toxins
TL;DR: The present review summarizes previous and very recent experimental data collected in vivo and in vitro regarding the transport, detoxification/metabolism and physiological impact of DON and its derivatives on intestinal, immune, endocrine and neurologic functions during their journey from the gut to the brain.
Abstract: Mycotoxins are fungal secondary metabolites contaminating food and causing toxicity to animals and humans. Among the various mycotoxins found in crops used for food and feed production, the trichothecene toxin deoxynivalenol (DON or vomitoxin) is one of the most prevalent and hazardous. In addition to native toxins, food also contains a large amount of plant and fungal derivatives of DON, including acetyl-DON (3 and 15ADON), glucoside-DON (D3G), and potentially animal derivatives such as glucuronide metabolites (D3 and D15GA) present in animal tissues (e.g., blood, muscle and liver tissue). The present review summarizes previous and very recent experimental data collected in vivo and in vitro regarding the transport, detoxification/metabolism and physiological impact of DON and its derivatives on intestinal, immune, endocrine and neurologic functions during their journey from the gut to the brain.

302 citations

Journal ArticleDOI
TL;DR: In this article, the formation and evolution of bars in N-body simulations of disc galaxies with gas and/or a triaxial halo was studied, and it was shown that both the relative gas fraction and the halo shape play a major role in the formation of the bar.
Abstract: We follow the formation and evolution of bars in N-body simulations of disc galaxies with gas and/or a triaxial halo. We find that both the relative gas fraction and the halo shape play a major role in the formation and evolution of the bar. In gas-rich simulations, the disc stays near-axisymmetric much longer than in gas-poor ones, and, when the bar starts growing, it does so at a much slower rate. Due to these two effects combined, large-scale bars form much later in gas-rich than in gas-poor discs. This can explain the observation that bars are in place earlier in massive red disc galaxies than in blue spirals. We also find that the morphological characteristics in the bar region are strongly influenced by the gas fraction. In particular, the bar at the end of the simulation is much weaker in gas-rich cases. In no case did we witness bar destruction. Halo triaxiality has a dual influence on bar strength. In the very early stages of the simulation it induces bar formation to start earlier. On the other hand, during the later, secular evolution phase, triaxial haloes lead to considerably less increase of the bar strength than spherical ones. The shape of the halo evolves considerably with time. The inner halo parts may become more elongated, or more spherical, depending on the bar strength. The main body of initially triaxial haloes evolves towards sphericity, but in initially strongly triaxial cases it stops well short of becoming spherical. Part of the angular momentum absorbed by the halo generates considerable rotation of the halo particles that stay located relatively near the disc for long periods of time. Another part generates halo bulk rotation, which, contrary to that of the bar, increases with time but stays small.

302 citations

Journal ArticleDOI
TL;DR: It is demonstrated that IL-18 primes NK cells in vivo to produce IFN-γ upon subsequent stimulation with IL-12, and this suggests that priming byIL-18 leads to an improved translation of IFn-γ mRNA.
Abstract: Recent evidence suggests that NK cells require priming to display full effector activity. In this study, we demonstrate that IL-18 contributed to this phenomenon. IL-18 signaling-deficient NK cells were found to be unable to secrete IFN-gamma in response to ex vivo stimulation with IL-12. This was not due to a costimulatory role of IL-18, because blocking IL-18 signaling during the ex vivo stimulation with IL-12 did not alter IFN-gamma production by wild-type NK cells. Rather, we demonstrate that IL-18 primes NK cells in vivo to produce IFN-gamma upon subsequent stimulation with IL-12. Importantly, IL-12-induced IFN-gamma transcription by NK cells was comparable in IL-18 signaling-deficient and -sufficient NK cells. This suggests that priming by IL-18 leads to an improved translation of IFN-gamma mRNA. These results reveal a novel type of cooperation between IL-12 and IL-18 that requires the sequential action of these cytokines.

301 citations

Journal ArticleDOI
TL;DR: A new process evaluation methodology of microalgae biodiesel shows good results in comparison to a reference pathway and the use of low-carbon energy sources is required to achieve significant reductions of the biodiesel GHG emission rate compared to petroleum diesel.

301 citations

Journal ArticleDOI
TL;DR: This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth.
Abstract: All living organisms rely on nutrients to sustain cell metabolism and energy production, which in turn need to be adjusted based on available resources. The evolutionarily conserved target of rapamycin (TOR) protein kinase is a central regulatory hub that connects environmental information about the quantity and quality of nutrients to developmental and metabolic processes in order to maintain cellular homeostasis. TOR is activated by both nitrogen and carbon metabolites and promotes energy-consuming processes such as cell division, mRNA translation, and anabolism in times of abundance while repressing nutrient remobilization through autophagy. In animals and yeasts, TOR acts antagonistically to the starvation-induced AMP-activated kinase (AMPK)/sucrose nonfermenting 1 (Snf1) kinase, called Snf1-related kinase 1 (SnRK1) in plants. This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth.

301 citations


Authors

Showing all 24784 results

NameH-indexPapersCitations
Didier Raoult1733267153016
Andrea Bocci1722402176461
Marc Humbert1491184100577
Carlo Rovelli1461502103550
Marc Besancon1431799106869
Jian Yang1421818111166
Josh Moss139101989255
Maksym Titov1391573128335
Bernard Henrissat139593100002
R. D. Kass1381920107907
Stylianos E. Antonarakis13874693605
Jean-Paul Kneib13880589287
Brad Abbott137156698604
Shu Li136100178390
Georges Aad135112188811
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

96% related

Pierre-and-Marie-Curie University
56.1K papers, 2.3M citations

94% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

94% related

University of Geneva
65.2K papers, 2.9M citations

94% related

University of California, San Diego
204.5K papers, 12.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023170
2022748
20215,607
20205,697
20195,288
20185,125