scispace - formally typeset
Search or ask a question
Institution

Alcatel-Lucent

Stuttgart, Germany
About: Alcatel-Lucent is a based out in Stuttgart, Germany. It is known for research contribution in the topics: Signal & Network packet. The organization has 37003 authors who have published 53332 publications receiving 1430547 citations. The organization is also known as: Alcatel-Lucent S.A. & Alcatel.


Papers
More filters
Journal ArticleDOI
TL;DR: This work proposes a high-rate coding scheme that can handle any configuration of transmit and receive antennas and that subsumes both V-BLAST and many proposed space-time block codes as special cases and shows that their performance is generally superior to earlier proposed methods over a wide range of rates and signal-to-noise ratios (SNRs).
Abstract: Multiple-antenna systems that operate at high rates require simple yet effective space-time transmission schemes to handle the large traffic volume in real time. At rates of tens of bits per second per hertz, Vertical Bell Labs Layered Space-Time (V-BLAST), where every antenna transmits its own independent substream of data, has been shown to have good performance and simple encoding and decoding. Yet V-BLAST suffers from its inability to work with fewer receive antennas than transmit antennas-this deficiency is especially important for modern cellular systems, where a base station typically has more antennas than the mobile handsets. Furthermore, because V-BLAST transmits independent data streams on its antennas there is no built-in spatial coding to guard against deep fades from any given transmit antenna. On the other hand, there are many previously proposed space-time codes that have good fading resistance and simple decoding, but these codes generally have poor performance at high data rates or with many antennas. We propose a high-rate coding scheme that can handle any configuration of transmit and receive antennas and that subsumes both V-BLAST and many proposed space-time block codes as special cases. The scheme transmits substreams of data in linear combinations over space and time. The codes are designed to optimize the mutual information between the transmitted and received signals. Because of their linear structure, the codes retain the decoding simplicity of V-BLAST, and because of their information-theoretic optimality, they possess many coding advantages. We give examples of the codes and show that their performance is generally superior to earlier proposed methods over a wide range of rates and signal-to-noise ratios (SNRs).

1,506 citations

Journal ArticleDOI
18 Nov 1999-Nature
TL;DR: In this paper, electrical transport measurements on single-wall carbon nanotubes (SWNTs) with intramolecular junctions are reported, showing that a metal-semiconductor junction behaves like a rectifying diode with nonlinear transport characteristics that are strongly asymmetric with respect to bias polarity.
Abstract: The ultimate device miniaturization would be to use individual molecules as functional devices. Single-wall carbon nanotubes (SWNTs) are promising candidates for achieving this: depending on their diameter and chirality, they are either one-dimensional metals or semiconductors1,2. Single-electron transistors employing metallic nanotubes3,4 and field-effect transistors employing semiconducting nanotubes5 have been demonstrated. Intramolecular devices have also been proposed which should display a range of other device functions6,7,8,9,10,11. For example, by introducing a pentagon and a heptagon into the hexagonal carbon lattice, two tube segments with different atomic and electronic structures can be seamlessly fused together to create intramolecular metal–metal, metal–semiconductor, or semiconductor–semiconductor junctions. Here we report electrical transport measurements on SWNTs with intramolecular junctions. We find that a metal–semiconductor junction behaves like a rectifying diode with nonlinear transport characteristics that are strongly asymmetric with respect to bias polarity. In the case of a metal–metal junction, the conductance appears to be strongly suppressed and it displays a power-law dependence on temperatures and applied voltage, consistent with tunnelling between the ends of two Luttinger liquids. Our results emphasize the need to consider screening and electron interactions when designing and modelling molecular devices. Realization of carbon-based molecular electronics will require future efforts in the controlled production of these intramolecular nanotube junctions.

1,485 citations

Journal ArticleDOI
TL;DR: The most important addenda of the proposed E3F are a sophisticated power model for various base station types, as well as large-scale long-term traffic models, which are applied to quantify the energy efficiency of the downlink of a 3GPP LTE radio access network.
Abstract: In order to quantify the energy efficiency of a wireless network, the power consumption of the entire system needs to be captured. In this article, the necessary extensions with respect to existing performance evaluation frameworks are discussed. The most important addenda of the proposed energy efficiency evaluation framework (E3F) are a sophisticated power model for various base station types, as well as large-scale long-term traffic models. The BS power model maps the RF output power radiated at the antenna elements to the total supply power of a BS site. The proposed traffic model emulates the spatial distribution of the traffic demands over large geographical regions, including urban and rural areas, as well as temporal variations between peak and off-peak hours. Finally, the E3F is applied to quantify the energy efficiency of the downlink of a 3GPP LTE radio access network.

1,462 citations

Proceedings ArticleDOI
26 Apr 2004
TL;DR: It is shown that MIMO radar leads to significant performance improvement in DF accuracy, and is carried out in terms of the Cramer-Rao bound of the mean-square error in estimating the target direction.
Abstract: It has recently been shown that multiple-input multiple-output (MIMO) antenna systems have the potential to improve dramatically the performance of communication systems over single antenna systems. Unlike beamforming, which presumes a high correlation between signals either transmitted or received by an array, the MIMO concept exploits the independence between signals at the array elements. In conventional radar, target scintillations are regarded as a nuisance parameter that degrades radar performance. The novelty of MIMO radar is that it takes the opposite view; namely, it capitalizes on target scintillations to improve the radar's performance. We introduce the MIMO concept for radar. The MIMO radar system under consideration consists of a transmit array with widely-spaced elements such that each views a different aspect of the target. The array at the receiver is a conventional array used for direction finding (DF). The system performance analysis is carried out in terms of the Cramer-Rao bound of the mean-square error in estimating the target direction. It is shown that MIMO radar leads to significant performance improvement in DF accuracy.

1,437 citations

Journal ArticleDOI
10 Jun 1999-Nature
TL;DR: In this article, it was shown that the magnetoresistive response increases dramatically when the Curie temperature (T C) is reduced, and that the massive magnetoresistance in low-T C systems can be explained by percolative transport through the ferromagnetic domains; this depends sensitively on the relative spin orientation of adjacent magnetoric domains which can be controlled by applied magnetic fields.
Abstract: Colossal magnetoresistance1—an unusually large change of resistivity observed in certain materials following application of magnetic field—has been extensively researched in ferromagnetic perovskite manganites. But it remains unclear why the magnetoresistive response increases dramatically when the Curie temperature (T C) is reduced. In these materials, T C varies sensitively with changing chemical pressure; this can be achieved by introducing trivalent rare-earth ions of differing size into the perovskite structure2,3,4, without affecting the valency of the Mn ions. The chemical pressure modifies local structural parameters such as the Mn–O bond distance and Mn–O–Mn bond angle, which directly influence the case of electron hopping between Mn ions (that is, the electronic bandwidth). But these effects cannot satisfactorily explain the dependence of magnetoresistance on T C. Here we demonstrate, using electron microscopy data, that the prototypical (La,Pr,Ca)MnO3 system is electronically phase-separated into a sub-micrometre-scale mixture of insulating regions (with a particular type of charge-ordering) and metallic, ferromagnetic domains. We find that the colossal magnetoresistive effect in low-T C systems can be explained by percolative transport through the ferromagnetic domains; this depends sensitively on the relative spin orientation of adjacent ferromagnetic domains which can be controlled by applied magnetic fields.

1,417 citations


Authors

Showing all 37011 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yoshua Bengio2021033420313
John A. Rogers1771341127390
Zhenan Bao169865106571
Thomas S. Huang1461299101564
Federico Capasso134118976957
Robert S. Brown130124365822
Christos Faloutsos12778977746
Robert J. Cava125104271819
Ramamoorthy Ramesh12264967418
Yann LeCun121369171211
Kamil Ugurbil12053659053
Don Towsley11988356671
Steven P. DenBaars118136660343
Robert E. Tarjan11440067305
Network Information
Related Institutions (5)
Bell Labs
59.8K papers, 3.1M citations

96% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

88% related

Samsung
163.6K papers, 2M citations

87% related

Chalmers University of Technology
53.9K papers, 1.5M citations

87% related

Georgia Institute of Technology
119K papers, 4.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202212
202130
202050
201983
2018215