scispace - formally typeset
Search or ask a question
Institution

Alcatel-Lucent

Stuttgart, Germany
About: Alcatel-Lucent is a based out in Stuttgart, Germany. It is known for research contribution in the topics: Signal & Network packet. The organization has 37003 authors who have published 53332 publications receiving 1430547 citations. The organization is also known as: Alcatel-Lucent S.A. & Alcatel.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the synthesis, thin-film morphology, and hole mobility in thin-filtered transistors of compounds based on the anthradithiophene ring system are reported, and the parent compound and its 2,8-dihexyl, didodecyl, and dioctadecyl derivatives (DHADT, DDADT and DOADT) are investigated.
Abstract: The synthesis, thin-film morphology, and hole mobility in thin-film transistors (TFTs) of compounds based on the novel anthradithiophene (ADT) ring system are reported. The parent compound and its 2,8-dihexyl, didodecyl, and dioctadecyl derivatives (DHADT, DDADT, and DOADT, respectively), synthesized via alkylated thiophene dicarboxaldehyde acetals, were investigated. They all form highly ordered polycrystalline vacuum-evaporated films with mobilities as high as 0.15 cm2/(V s), as high as has ever been observed for a polycrystalline organic material. DOADT has a mobility of 0.06 cm2/(V s) even though 70% of its molecular volume is occupied by hydrocarbon chains. DHADT was cast from solution under atmospheric conditions onto a TFT giving a mobility of 0.01−0.02 cm2/(V s). Thus, the alkylated ADTs combine a pentacene-like intrinsic mobility with greater solubility and oxidative stability.

373 citations

Journal ArticleDOI
TL;DR: In this paper, a single organic thin-film field effect transistor (FET) was integrated with an organic light-emitting diode to achieve a luminance of ∼2300cd/m2.
Abstract: The fabrication and characteristics of organic smart pixels are described. The smart pixel reported in this letter consists of a single organic thin-film field effect transistor (FET) monolithically integrated with an organic light-emitting diode. The FET active material is a regioregular polythiophene. The maximum optical power emitted by the smart pixel is about 300 nW/cm2 corresponding to a luminance of ∼2300 cd/m2.

372 citations

Journal ArticleDOI
22 May 2003-Nature
TL;DR: This work uses electron counting to measure directly the quantum dot's tunnelling rate and the occupational probabilities of its charge state and provides evidence in favour of long (10 µs or more) inelastic scattering times in nearly isolated dots.
Abstract: Nanostructures in which strong (Coulomb) interactions exist between electrons are predicted to exhibit temporal electronic correlations1. Although there is ample experimental evidence that such correlations exist2, electron dynamics in engineered nanostructures have been observed directly only on long timescales3. The faster dynamics associated with electrical currents or charge fluctuations4 are usually inferred from direct (or quasi-direct) current measurements. Recently, interest in electron dynamics has risen, in part owing to the realization that additional information about electronic interactions can be found in the shot noise5 or higher statistical moments6,7 of a direct current. Furthermore, interest in quantum computation has stimulated investigation of quantum bit (qubit) readout techniques8,9, which for many condensed-matter systems ultimately reduces to single-shot measurements of individual electronic charges. Here we report real-time observation of individual electron tunnelling events in a quantum dot using an integrated radio-frequency single-electron transistor10,11. We use electron counting to measure directly the quantum dot's tunnelling rate and the occupational probabilities of its charge state. Our results provide evidence in favour of long (10 µs or more) inelastic scattering times in nearly isolated dots.

371 citations

Journal ArticleDOI
TL;DR: This paper derives new closed-form expressions for the exact and asymptotic OPs, accounting for hardware impairments at the source, relay, and destination, and proves that for high signal-to-noise ratio (SNR), the end- to-end SNDR converges to a deterministic constant, coined the SNDR ceiling, which is inversely proportional to the level of impairments.
Abstract: Physical transceivers have hardware impairments that create distortions which degrade the performance of communication systems. The vast majority of technical contributions in the area of relaying neglect hardware impairments and, thus, assume ideal hardware. Such approximations make sense in low-rate systems, but can lead to very misleading results when analyzing future high-rate systems. This paper quantifies the impact of hardware impairments on dual-hop relaying, for both amplify-and-forward and decode-and-forward protocols. The outage probability (OP) in these practical scenarios is a function of the effective end-to-end signal-to-noise-and-distortion ratio (SNDR). This paper derives new closed-form expressions for the exact and asymptotic OPs, accounting for hardware impairments at the source, relay, and destination. A similar analysis for the ergodic capacity is also pursued, resulting in new upper bounds. We assume that both hops are subject to independent but non-identically distributed Nakagami-m fading. This paper validates that the performance loss is small at low rates, but otherwise can be very substantial. In particular, it is proved that for high signal-to-noise ratio (SNR), the end-to-end SNDR converges to a deterministic constant, coined the SNDR ceiling, which is inversely proportional to the level of impairments. This stands in contrast to the ideal hardware case in which the end-to-end SNDR grows without bound in the high-SNR regime. Finally, we provide fundamental design guidelines for selecting hardware that satisfies the requirements of a practical relaying system.

370 citations

Patent
08 Dec 1998
TL;DR: A system or method for human resource skill management, training, career development, and deployment, linking specialties, job functions, skill sets, and experience/training profiles is presented in this paper.
Abstract: A system or method for human resource skill management, training, career development, and deployment, linking specialties, job functions, skill sets, and experience/training profiles The method uses skill templates, an innovation that allows for systematic evaluation of employee skills A weighting system is used to establish the relative significance of various skills Skills are sub-classified as per technology Assessment of employee suitability for a project is based on quantitative evaluation and not on a subjective consideration Various new skills assessment metrics have been introduced

369 citations


Authors

Showing all 37011 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yoshua Bengio2021033420313
John A. Rogers1771341127390
Zhenan Bao169865106571
Thomas S. Huang1461299101564
Federico Capasso134118976957
Robert S. Brown130124365822
Christos Faloutsos12778977746
Robert J. Cava125104271819
Ramamoorthy Ramesh12264967418
Yann LeCun121369171211
Kamil Ugurbil12053659053
Don Towsley11988356671
Steven P. DenBaars118136660343
Robert E. Tarjan11440067305
Network Information
Related Institutions (5)
Bell Labs
59.8K papers, 3.1M citations

96% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

88% related

Samsung
163.6K papers, 2M citations

87% related

Chalmers University of Technology
53.9K papers, 1.5M citations

87% related

Georgia Institute of Technology
119K papers, 4.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202212
202130
202050
201983
2018215