scispace - formally typeset
Search or ask a question
Institution

Amazon.com

CompanySeattle, Washington, United States
About: Amazon.com is a company organization based out in Seattle, Washington, United States. It is known for research contribution in the topics: Service (business) & Service provider. The organization has 13363 authors who have published 17317 publications receiving 266589 citations.


Papers
More filters
Patent
21 Jul 2014
TL;DR: In this article, the authors describe methods to prevent customers of a service provider from downloading snapshots of volumes, such as boot images created by the service provider or provided by third parties, to which the customer does not have the appropriate rights.
Abstract: Methods, apparatus, and computer-accessible storage media for controlling export of snapshots to external networks in service provider environments. Methods are described that may be used to prevent customers of a service provider from downloading snapshots of volumes, such as boot images created by the service provider or provided by third parties, to which the customer does not have the appropriate rights. A request may be received from a user to access one or more snapshots, for example a request to export the snapshot or a request for a listing of snapshots. For each snapshot, the service provider may determine if the user has rights to the snapshot, for example by checking a manifest for the snapshot to see if entries in the snapshot manifest belong to an account other than the customer's. If the user has rights to the snapshot, the request is granted; otherwise, the request is not granted.

70 citations

Patent
Jason A. Kronz1
05 Aug 1999
TL;DR: In this article, the authors propose a protocol for enabling any of a variety of devices to communicate with each other over a common or universal protocol, where the client device may initiate several requests including a service request, a type request or a use request.
Abstract: A method and apparatus for enabling any of a variety of devices to communicate with each other over a common or universal protocol. In general, a client device and a server device communicate with each other over a communications link utilizes the common protocol. Initially, once a communications link is established, the server device identifies itself to the client device by sending a tag line message over the communications link. Upon receiving the tag line message, the client then determines that the server is capable of using the common protocol. The client device may then initiate several requests including a service request, a type request or a use request. If the client device initiates a service request, the client simple uses the common protocol to request the service. In response to receiving the service request, the server device performs the requested service and provides a confirmation to the client device. If the client device initiates a type request, the service device will respond by providing information regarding the services the server device provides and the device types supported by the server device. If the client device initiates a use request for a particular service, the server device will provide information to the client device that describes the necessary parameters for invoking the particular service.

70 citations

Patent
22 Jun 2010
TL;DR: A set of articles that describe challenges and problem-solving strategies for providing the level of security that users will expect in order to for them to place trust in handheld devices.
Abstract: Techniques for providing friction-free transactions using geolocation and user identifiers are described herein. These techniques may ascertain a user's location based on a location of a mobile device. A transaction between the user and a merchant may be completed with zero or minimal input from the user based on the geolocation of the mobile device and the user identifiers. In some implementations, a transaction initiated earlier is completed when the mobile device arrives at the merchant. Additionally, a parent-child or similar relationship may be established between multiple devices. Security on the mobile device based may be provided by biometric identification and calculation of variance from regular movement patterns. Advertisements may be sent to the mobile device based on bids from merchants near to the mobile device. Promotions may be sent to the mobile device when more than a threshold number of mobile devices are located at the same merchant.

70 citations

Journal ArticleDOI
TL;DR: It is suggested that high s.PDss and ses.MNTD in western Amazonia results from its favourable, easy-to-colonize environment, whereas high values in the Brazilian and Guianan Shields may be due to accumulation of lineages over a longer period of time, which may reflect greater lineage diversity in communities.
Abstract: Aim: To examine variation in the phylogenetic diversity (PD) of tree communities across geographical and environmental gradients in Amazonia. Location: Two hundred and eighty-three c. 1 ha forest inventory plots from across Amazonia. Methods: We evaluated PD as the total phylogenetic branch length across species in each plot (PDss), the mean pairwise phylogenetic distance between species (MPD), the mean nearest taxon distance (MNTD) and their equivalents standardized for species richness (ses.PDss, ses.MPD, ses.MNTD). We compared PD of tree communities growing (1) on substrates of varying geological age; and (2) in environments with varying ecophysiological barriers to growth and survival. Results: PDss is strongly positively correlated with species richness (SR), whereas MNTD has a negative correlation. Communities on geologically young- and intermediate-aged substrates (western and central Amazonia respectively) have the highest SR, and therefore the highest PDss and the lowest MNTD. We find that the youngest and oldest substrates (the latter on the Brazilian and Guiana Shields) have the highest ses.PDss and ses.MNTD. MPD and ses.MPD are strongly correlated with how evenly taxa are distributed among the three principal angiosperm clades and are both highest in western Amazonia. Meanwhile, seasonally dry tropical forest (SDTF) and forests on white sands have low PD, as evaluated by any metric. Main conclusions: High ses.PDss and ses.MNTD reflect greater lineage diversity in communities. We suggest that high ses.PDss and ses.MNTD in western Amazonia results from its favourable, easy-to-colonize environment, whereas high values in the Brazilian and Guianan Shields may be due to accumulation of lineages over a longer period of time. White-sand forests and SDTF are dominated by close relatives from fewer lineages, perhaps reflecting ecophysiological barriers that are difficult to surmount evolutionarily. Because MPD and ses.MPD do not reflect lineage diversity per se, we suggest that PDss, ses.PDss and ses.MNTD may be the most useful diversity metrics for setting large-scale conservation priorities.

70 citations


Authors

Showing all 13498 results

NameH-indexPapersCitations
Jiawei Han1681233143427
Bernhard Schölkopf1481092149492
Christos Faloutsos12778977746
Alexander J. Smola122434110222
Rama Chellappa120103162865
William F. Laurance11847056464
Andrew McCallum11347278240
Michael J. Black11242951810
David Heckerman10948362668
Larry S. Davis10769349714
Chris M. Wood10279543076
Pietro Perona10241494870
Guido W. Imbens9735264430
W. Bruce Croft9742639918
Chunhua Shen9368137468
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

89% related

Google
39.8K papers, 2.1M citations

88% related

Carnegie Mellon University
104.3K papers, 5.9M citations

87% related

ETH Zurich
122.4K papers, 5.1M citations

82% related

University of Maryland, College Park
155.9K papers, 7.2M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
2022168
20212,015
20202,596
20192,002
20181,189