scispace - formally typeset
Search or ask a question
Institution

Amazon.com

CompanySeattle, Washington, United States
About: Amazon.com is a company organization based out in Seattle, Washington, United States. It is known for research contribution in the topics: Computer science & Service (business). The organization has 13363 authors who have published 17317 publications receiving 266589 citations.


Papers
More filters
Proceedings ArticleDOI
05 Apr 2019
TL;DR: This paper reports state-of-the-art results on LibriSpeech among end-to-end speech recognition models without any external training data and introduces a new layer-wise optimizer called NovoGrad to improve training.
Abstract: In this paper, we report state-of-the-art results on LibriSpeech among end-to-end speech recognition models without any external training data. Our model, Jasper, uses only 1D convolutions, batch normalization, ReLU, dropout, and residual connections. To improve training, we further introduce a new layer-wise optimizer called NovoGrad. Through experiments, we demonstrate that the proposed deep architecture performs as well or better than more complex choices. Our deepest Jasper variant uses 54 convolutional layers. With this architecture, we achieve 2.95% WER using a beam-search decoder with an external neural language model and 3.86% WER with a greedy decoder on LibriSpeech test-clean. We also report competitive results on the Wall Street Journal and the Hub5'00 conversational evaluation datasets.

176 citations

Patent
18 Aug 2009
TL;DR: In this paper, the authors describe techniques for facilitating interactions between computing systems, such as by performing transactions between parties that are automatically authorized via a third-party transaction authorization system, where the transactions are programmatic transactions involving the use of fee-based Web services by executing application programs.
Abstract: Techniques are described for facilitating interactions between computing systems, such as by performing transactions between parties that are automatically authorized via a third-party transaction authorization system. In some situations, the transactions are programmatic transactions involving the use of fee-based Web services by executing application programs, with the transaction authorization system authorizing and/or providing payments in accordance with private authorization instructions previously specified by the parties. The authorization instructions may include predefined instruction rule sets that regulate conditions under which a potential transaction can be authorized, with the instruction rule sets each referenced by an associated reference token. After one or more of the parties to a potential transaction supply reference tokens for the parties, the transaction authorization system can determine whether to authorize the transaction based on whether the instruction rule sets associated with the reference tokens are compatible or otherwise satisfied.

176 citations

Book ChapterDOI
15 Sep 2010
TL;DR: This work model users' access patterns by profiling the data points that users access, in contrast to analyzing the query expressions in prior approaches, based on the key observation that query syntax alone is a poor discriminator of user intent.
Abstract: The insider threat against database management systems is a dangerous security problem. Authorized users may abuse legitimate privileges to masquerade as other users or to maliciously harvest data. We propose a new direction to address this problem. We model users' access patterns by profiling the data points that users access, in contrast to analyzing the query expressions in prior approaches. Our data-centric approach is based on the key observation that query syntax alone is a poor discriminator of user intent, which is much better rendered by what is accessed. We present a feature-extraction method to model users' access patterns. Statistical learning algorithms are trained and tested using data from a real Graduate Admission database. Experimental results indicate that the technique is very effective, accurate, and is promising in complementing existing database security solutions. Practical performance issues are also addressed.

176 citations

Book ChapterDOI
08 Sep 2018
TL;DR: MSG-Net is the first to achieve real-time brush-size control in a purely feed-forward manner for style transfer and is compatible with most existing techniques including content-style interpolation, color-preserving, spatial control and brush stroke size control.
Abstract: Despite the rapid progress in style transfer, existing approaches using feed-forward generative network for multi-style or arbitrary-style transfer are usually compromised of image quality and model flexibility. We find it is fundamentally difficult to achieve comprehensive style modeling using 1-dimensional style embedding. Motivated by this, we introduce CoMatch Layer that learns to match the second order feature statistics with the target styles. With the CoMatch Layer, we build a Multi-style Generative Network (MSG-Net), which achieves real-time performance. In addition, we employ an specific strategy of upsampled convolution which avoids checkerboard artifacts caused by fractionally-strided convolution. Our method has achieved superior image quality comparing to state-of-the-art approaches. The proposed MSG-Net as a general approach for real-time style transfer is compatible with most existing techniques including content-style interpolation, color-preserving, spatial control and brush stroke size control. MSG-Net is the first to achieve real-time brush-size control in a purely feed-forward manner for style transfer. Our implementations and pre-trained models for Torch, PyTorch and MXNet frameworks will be publicly available (Links can be found at http://hangzhang.org/).

175 citations

Journal ArticleDOI
TL;DR: This work proposes a system for performing structural change detection in street-view videos captured by a vehicle-mounted monocular camera over time, and introduces a new urban change detection dataset which is an order of magnitude larger than existing datasets and contains challenging changes due to seasonal and lighting variations.
Abstract: We propose a system for performing structural change detection in street-view videos captured by a vehicle-mounted monocular camera over time. Our approach is motivated by the need for more frequent and efficient updates in the large-scale maps used in autonomous vehicle navigation. Our method chains a multi-sensor fusion SLAM and fast dense 3D reconstruction pipeline, which provide coarsely registered image pairs to a deep Deconvolutional Network (DN) for pixel-wise change detection. We investigate two DN architectures for change detection, the first one is based on the idea of stacking contraction and expansion blocks while the second one is based on the idea of Fully Convolutional Networks. To train and evaluate our networks we introduce a new urban change detection dataset which is an order of magnitude larger than existing datasets and contains challenging changes due to seasonal and lighting variations. Our method outperforms existing literature on this dataset, which we make available to the community, and an existing panoramic change detection dataset, demonstrating its wide applicability.

175 citations


Authors

Showing all 13498 results

NameH-indexPapersCitations
Jiawei Han1681233143427
Bernhard Schölkopf1481092149492
Christos Faloutsos12778977746
Alexander J. Smola122434110222
Rama Chellappa120103162865
William F. Laurance11847056464
Andrew McCallum11347278240
Michael J. Black11242951810
David Heckerman10948362668
Larry S. Davis10769349714
Chris M. Wood10279543076
Pietro Perona10241494870
Guido W. Imbens9735264430
W. Bruce Croft9742639918
Chunhua Shen9368137468
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

89% related

Google
39.8K papers, 2.1M citations

88% related

Carnegie Mellon University
104.3K papers, 5.9M citations

87% related

ETH Zurich
122.4K papers, 5.1M citations

82% related

University of Maryland, College Park
155.9K papers, 7.2M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
2022168
20212,015
20202,596
20192,002
20181,189