scispace - formally typeset
Search or ask a question

Showing papers by "Ames Research Center published in 1990"


Journal ArticleDOI
TL;DR: In this article, nonreflecting boundary conditions are defined for multidimensional fluid dynamics problems where waves enter and leave the interior of a domain modeled by hyperbolic equations, and separate equations for each type of incoming and outgoing wave.

1,411 citations


Proceedings ArticleDOI
01 Jan 1990
TL;DR: In this paper, high-order accurate finite-volume schemes for solving the Euler equations of gasdynamics were developed, where the construction of a k-exact reconstruction operator given cell-averaged quantities and the use of high order flux quadrature formulas were used.
Abstract: High order accurate finite-volume schemes for solving the Euler equations of gasdynamics are developed. Central to the development of these methods are the construction of a k-exact reconstruction operator given cell-averaged quantities and the use of high order flux quadrature formulas. General polygonal control volumes (with curved boundary edges) are considered. The formulations presented make no explicit assumption as to complexity or convexity of control volumes. Numerical examples are presented for Ringleb flow to validate the methodology.

586 citations


Journal ArticleDOI
TL;DR: The results suggest that the red edge could be used to estimate the chlorophyll content in branches, but it is unlikely to be of value for the estimation of chlorophylla content in canopies unless the canopy cover is high.
Abstract: Chlorophyll is a key indicator of the physiological status of a forest canopy. However, its distribution may vary greatly in time and space, so that the estimation of chlorophyll content of canopies or branches by extrapolation from leaf values obtained by destructive sampling is labor intensive and potentially inaccurate. Chlorophy11 content is related positively to the point of maximum slope in vegetation reflectance spectra which occurs at wavelengths between 690-740 nm and is known as the "red edge." The red edge of needles on individual slash pine (Piniis elliottii Engelm.) branches and in whole forest canopies was measured with a spectroradiometer. Branches were measured on the ground against a spectrally flat reflectance target and canopies were measured from observation towers against a spectrally variable understory and forest floor. There was a linear relationship between red edge and chlorophyll content of branches (R(exp 2) = 0.91). Measurements of the red edge and this relationship were used to estimate the chlorophyll content of other branches with an error that was lower than that associated with the colorimetric (laboratory) method. There was no relationship between the red edge and the chlorophyll content of whole canopies. This can be explained by the overriding influence of the understory and forest floor, an influence that was illustrated by spectral mixture modeling. The results suggest that the red edge could be used to estimate the chlorophyll content in branches but it is unlikely to be of value for the estimation of chlorophyll content in canopies unless the canopy cover is high.

527 citations


Journal ArticleDOI
TL;DR: In this article, the Navier-Stokes equations are solved in a time-accurate manner, using the method of pseudocompres sibility, where subiterations in pseudotime are required to satisfy the continuity equation at each time step.
Abstract: The two-dimensional incompressible Navier-Stokes equations are solved in a time-accurate manner, using the method of pseudocompres sibility. Using this method, subiterations in pseudotime are required to satisfy the continuity equation at each time step. An upwind differencing scheme, based on flux-difference splitting, is used to compute the convective terms. The upwind differencing is biased, based on the sign of the local eigenvalue of the Jacobian matrix of the convective fluxes. Both third-order and fifth-order differencing schemes are used on the convective fluxes throughout the grid's interior. The equations are solved using an implicit line relaxation scheme. This solution scheme is stable and is capable of running at large time steps in pseudo-time, leading to fast convergence for each physical time step. A variety of computed results are presented to validate the present scheme. Results for the flow over an oscillating plate are compared with the exact analytic solution, and good agreement is seen. Excellent comparison is obtained between the computed solution and the analytical results for inviscid channel flow with an oscillating back pressure. Flow solutions over a circular cylinder with vortex shedding are also presented. Finally, the flow past an airfoil at —90° angle of attack is computed.

477 citations


Journal ArticleDOI
TL;DR: In this paper, the behavior of typical numerical methods on a simple advection equation with a parameter-dependent source term was studied, and two approaches to incorporate the source term were utilized: MacCormack type predictor-corrector methods with flux limiters, and splitting methods in which the fluid dynamics and chemistry are handled in separate steps.

441 citations


Journal ArticleDOI
TL;DR: In this article, the effects of canopy closure, understory vegetation, and background reflectance on the relationship between Landsat TM data and the leaf area index (LAI) of temperate coniferous forests in the western U.S.
Abstract: Consideration is given to the effects of canopy closure, understory vegetation, and background reflectance on the relationship between Landsat TM data and the leaf area index (LAI) of temperate coniferous forests in the western U.S. A methodology for correcting TM data for atmospheric conditions and sun-surface-sensor geometry is discussed. Strong inverse curvilinear relationships were found between coniferous forest LAI and TM bands 3 and 5. It is suggested that these inverse relationships are due to increased reflectance of understory vegetation and background in open stands of lower LAI and decreased reflectance of the overstory in closed canopy stands with higher LAI.

434 citations


Journal ArticleDOI
TL;DR: In this paper, the separation of a two-dimensional laminar boundary layer under the influence of a suddenly imposed external adverse pressure gradient was studied by time-accurate numerical solutions of the Navier-Stokes equations.
Abstract: The separation of a two-dimensional laminar boundary layer under the influence of a suddenly imposed external adverse pressure gradient was studied by time-accurate numerical solutions of the Navier–Stokes equations. It was found that a strong adverse pressure gradient created periodic vortex shedding from the separation. The general features of the time-averaged results were similar to experimental results for laminar separation bubbles. Comparisons were made with the ‘steady’ separation experiments of Gaster (1966). It was found that his ‘bursting’ occurs under the same conditions as our periodic shedding, suggesting that bursting is actually periodic shedding which has been time-averaged. The Strouhal number based on the shedding frequency, local free-stream velocity, and boundary-layer momentum thickness at separation was independent of the Reynolds number and the pressure gradient. A criterion for onset of shedding was established. The shedding frequency was the same as that predicted for the most amplified linear inviscid instability of the separated shear layer.

407 citations


Journal ArticleDOI
TL;DR: In this paper, the authors introduced normalized helicity and helicity density for the graphical representation of three-dimensional flow fields that contain concentrated vortices, which can be used to identify and accentuate the concentrated vortex-core streamlines and mark their separation and reattachment lines.
Abstract: Helicity density and normalized helicity are introduced as important tools for the graphical representation of three-dimensional flowfields that contain concentrated vortices. The use of these two quantities filters out the flowfield regions of low vorticity, as well as regions of high vorticity but low speed where the angle between the velocity and vorticity vectors is large (such as in the boundary layer). Their use permits the researcher to identify and accentuate the concentrated vortices, differentiate between primary and secondary vortices, and mark their separation and reattachment lines. The method also allows locating singular points in the flowfield and tracing the vortex-core streamlines that emanate from them. Nomenclature H = helicity Hd = helicity density Hn — normalized helicity MOO = freestream Mach number ReD = Reynolds number V = velocity a = angle of attack co = vorticity

341 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the coupled cluster single, double, and triple excitation model to ascertain electron correlation energies for 14 different molecules representing a variety of chemical bonds, in conjunction with several methods of this type 'CCSDT-x', which include only an approximate treatment of connected triple excitations.
Abstract: The 'coupled cluster single, double, and triple' (CCSDT) excitation model has been used to ascertain electron correlation energies for 14 different molecules representing a variety of chemical bonds, in conjunction with several methods of this type 'CCSDT-x', which include only an approximate treatment of connected triple excitations; these methods encompass CCSDT-1a, -1b, -2, -3, and -4, as well as the novel CCSD(T). While all methods treat the effects of connected triple excitations iteratively, CCSD(T) approaches then perturbationally. For the 14 molecules considered, the CCSD(T) method's average error relative to CCSDT is substantially lower than any of the CCSDT-x methods.

334 citations


Proceedings Article
29 Jul 1990
TL;DR: A theoretical analysis is presented to explain why the heuristic method for solving large-scale constraint satisfaction and scheduling problems works so well on certain types of problems and to predict when it is likely to be most effective.
Abstract: This paper describes a simple heuristic method for solving large-scale constraint satisfaction and scheduling problems. Given an initial assignment for the variables in a problem, the method operates by searching though the space of possible repairs. The search is guided by an ordering heuristic, the min-conflicts heuristic, that attempts to minimize the number of constraint violations after each step. We demonstrate empirically that the method performs orders of magnitude better than traditional backtracking techniques on certain standard problems. For example, the one million queens problem can be solved rapidly using our approach. We also describe practical scheduling applications where the method has been successfully applied. A theoretical analysis is presented to explain why the method works so well on certain types of problems and to predict when it is likely to be most effective.

331 citations


Journal ArticleDOI
TL;DR: Surface topography increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.
Abstract: Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.

Journal ArticleDOI
TL;DR: In this paper, it is shown that the stability of an elliptical flow is governed by an Ince equation and an analytical representation for a localized solution is given and establishes a direct link with previous computations and experiments.
Abstract: The three‐dimensional (3‐D) instability of a two‐dimensional (2‐D) flow with elliptical streamlines has been proposed as a generic mechanism for the breakdown of many 2‐D flows. A physical interpretation for the mechanism is presented together with an analytical treatment of the problem. It is shown that the stability of an elliptical flow is governed by an Ince equation. An analytical representation for a localized solution is given and establishes a direct link with previous computations and experiments.

Journal ArticleDOI
TL;DR: In this article, a theoretical parameter study of dense photodissociation regions is presented, where it is found that when the gas density is sufficiently high relative to the FUV flux, self-shielding of the molecules can move the C(+)/CO and H/H2 atomic-molecular transitions close to the surfaces of the molecular cloud, where they can feel the full effect of heating by the FU radiation field.
Abstract: A theoretical parameter study of dense photodissociation regions is presented. It is found that when the gas density is sufficiently high relative to the FUV flux, self-shielding of the molecules can move the C(+)/CO and H/H2 atomic-molecular transitions close to the surfaces of the molecular cloud, where they can feel the full effect of heating by the FUV radiation field. For n of 100,000/cu cm, collisional deexcitation of the FUV-pumped H2 can move the lower levels toward the LTE, producing line ratio resembling those of shocked regions for these low-v levels, while the high-v level line ratios retain a 'fluorescent' value. Appreciable emission in high-J transitions of CO originates in this warm molecular gas. Comparison with observations suggests that a small volume filling factor of high density clumps embedded within a moderate density interclump medium are a common phenomenon in photodissociation regions.

Journal ArticleDOI
TL;DR: In this paper, a flexible and relatively inexpensive method and apparatus for continuous pressure mapping of aerodynamic surfaces using photoluminescence and imaging techniques is described, where the luminescence intensity is found to be inversely proportional to the partial pressure of oxygen.
Abstract: A flexible and relatively inexpensive method and apparatus are described for continuous pressure mapping of aerodynamic surfaces using photoluminescence and imaging techniques. Platinum octaethylporphyrin (PtOEP) has a phosphorescence known to be quenched by oxygen. When dissolved in a silicone matrix, PtOEP may be distributed over a surface as a thin, uniform film. When the film is irradiated with ultraviolet light, the luminescence intensity provides a readily detectable, qualitative surface flow visualization. Moreover, since the luminescence intensity is found to be inversely proportional to the partial pressure of oxygen, a quantitative measure of pressure change may be obtained using a silicon target vidicon or a charge-coupled device video sensor to measure intensity. Luminescent images are captured by a commercial frame buffer board. Images taken in wind tunnels during airflow are ratioed to images taken under ambient 'wind-off' conditions. The resulting intensity ratio information is converted to pressure using calibration curves of I0/I vs p/p0, where I0 is the intensity at ambient pressure p0 and I is the intensity at any other pressure p.

Journal ArticleDOI
TL;DR: Results are consistent with a substantial internal resistance to CO2 diffusion in the thick Metrosideros polymorpha leaves in high elevation sites and limited gas-exchange information suggested that calculated ci/ca did not decrease with elevation in association with less-negative δ13C, and photosynthesis per unit of nitrogen was significantly reduced in high-elevation plants.
Abstract: Sun leaves of Metrosideros polymorpha were collected in 51 sites on 9 lava flows that represented gradients of elevation, precipitation, substrate age, and substrate texture on Mauna Loa volcano, Hawai'i. Leaf mass per unit leaf area increased with increasing elevation on all flows, while foliar nitrogen concentration decreased with increasing elevation and increased with increasing substrate age. Foliar δ13C became less negative with increasing elevation on the wet east-side lava flows, but not the dry northwest-side flows; it did not reflect patterns of precipitation or presumed water availability. δ13C was very strongly correlated with leaf mass per area across all of the sites. Limited gas-exchange information suggested that calculated ci/ca did not decrease with elevation in association with less-negative δ13C, and photosynthesis per unit of nitrogen was significantly reduced in high-elevation plants. These results are consistent with a substantial internal resistance to CO2 diffusion in the thick Metrosideros polymorpha leaves in high elevation sites.

Journal ArticleDOI
TL;DR: In this article, numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation.
Abstract: Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.

Journal ArticleDOI
TL;DR: A photographic atlas of polar-ring galaxies and related objects is presented in this paper, which includes good candidates based on their morphological appearance, possible candidates (category C), and possibly related objects (category D).
Abstract: A photographic atlas of polar-ring galaxies and related objects is presented. The atlas includes kinematically confirmed polar-ring galaxies (category A), good candidates based on their morphological appearance (category B), possible candidates (category C), and possibly related objects (category D). New photometric and kinematic observations are reported for several galaxies in the catalog, including observations that show that UGC 7576 and UGC 9796 ( = II ZW 73) are S0 galaxies with polar rings. Roughly 0.5 percent of all nearby S0 galaxies appear to have polar rings. When corrected for various selection effects (e.g., nonoptimal viewing orientation, possible dimming, or limited lifetime of the ring) the percentage increases to about 5 percent of S0 galaxies which have, or have had a polar ring.

Journal ArticleDOI
TL;DR: There was a significant linear correlation (r = 0.70, P less than 0.05) between changes of baroreflex slopes from before bed rest to bed rest day 25 and changes of systolic blood pressure during standing after bed rest.
Abstract: We studied vagally mediated carotid baroreceptor-cardiac reflexes in 11 healthy men before, during, and after 30 days of 6 degrees head-down bed rest to test the hypothesis that baroreflex malfunction contributes to orthostatic hypotension in this model of simulated microgravity. Sigmoidal baroreflex response relationships were provoked with ramped neck pressure-suction sequences comprising pressure elevations to 40 mmHg followed by serial R-wave-triggered 15-mmHg reductions to -65 mmHg. Each R-R interval was plotted as a function of systolic pressure minus the neck chamber pressure applied during the interval. Compared with control measurements, base-line R-R intervals and the minimum, maximum, range, and maximum slope of the R-R interval-carotid pressure relationships were reduced (P less than 0.05) from bed rest day 12 through recovery day 5. Baroreflex slopes were reduced more in four subjects who fainted during standing after bed rest than in six subjects who did not faint (-1.8 +/- 0.7 vs. -0.3 +/- 0.3 ms/mmHg, P less than 0.05). There was a significant linear correlation (r = 0.70, P less than 0.05) between changes of baroreflex slopes from before bed rest to bed rest day 25 and changes of systolic blood pressure during standing after bed rest. Although plasma volume declined by approximately 15% (P less than 0.05), there was no significant correlation between reductions of plasma volume and changes of baroreflex responses. There were no significant changes of before and after plasma norepinephrine or epinephrine levels before and after bed rest during supine rest or sitting.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: In this article, an approach using relationships among soil fertility, nitrogen cycling, and nitrous oxide production is presented in order to estimate Nitrous oxide flux from humid tropical forests, and the effects of human disturbance are also investigated.
Abstract: An approach using relationships among soil fertility, nitrogen cycling, and nitrous oxide production is presented in order to estimate nitrous oxide flux from humid tropical forests. The effects of human disturbance are also investigated. It is noted that recent estimates suggest that 6-10 million ha. of tropical forest are cleared permanently each year. The results of measurements of nitrous oxide flux from cleared and burned sites in Costa Rica and Brazil, in conjunction with satellite-based classifications of ecosystem types, are used to calculate average hourly fluxes for a given region. In the NASA intensive site near Manaus, Brazil, it was found that although pasture areas cover only 11 percent of the region they account for 40 percent of the nitrous oxide flux. This analysis of the fluxes of trace gases through consideration of the gradients of factors that control both fluxes and ecosystem properties and processes will prove useful for extrapolating fluxes and for calculating budgets of nitrous oxide, methane, nonmethane hydrocarbons, and carbon dioxide.

Journal ArticleDOI
TL;DR: In this paper, the energy transfer from the eddy-damped quasinormal Markovian (EDQNM) theory of turbulence at low Reynolds numbers was investigated. But the results of the simulation were not as good as those obtained by direct numerical simulations.
Abstract: Detailed computations were made of energy transfer among the scales of motion in incompressible turbulent fields at low Reynolds numbers generated by direct numerical simulations. It was observed that although the transfer resulted from triad interactions that were nonlocal in k space, the energy always transferred locally. The energy transfer calculated from the eddy‐damped quasinormal Markovian (EDQNM) theory of turbulence at low Reynolds numbers is in excellent agreement with the results of the numerical simulations. At high Reynolds numbers the EDQNM theory predicts the same transfer mechanism in the inertial range that is observed at low Reynolds numbers, i.e., predominantly local transfer caused by nonlocal triads. The weaker, nonlocal energy transfer is from large to small scales at high Reynolds numbers and from small to large scales at low Reynolds numbers.

Journal ArticleDOI
TL;DR: In this article, a multimirror ground-based telescope for time-series photometry of rapid variable stars, designed to minimize or eliminate gaps in the brightness record caused by the rotation of the earth, is described.
Abstract: A new multimirror ground-based telescope for time-series photometry of rapid variable stars, designed to minimize or eliminate gaps in the brightness record caused by the rotation of the earth, is described. A sequence of existing telescopes distributed in longitude, coordinated from a single control center, is used to measure designated target stars so long as they are in darkness. Data are returned by electronic mail to the control center, where they are analyzed in real time. This instrument is the first to provide data of continuity and quality that permit true high-resolution power spectroscopy of pulsating white dwarf stars.

Journal ArticleDOI
01 Nov 1990-Icarus
TL;DR: In this article, a telescopic and laboratory investigation of water distribution among low albedo asteroids in the outer belt, using the 3-micron reflectance absorption of molecular H2O and structural OH ions, was conducted.

Journal ArticleDOI
22 Mar 1990-Nature
TL;DR: In this paper, it is argued that denitrification of the Arctic stratosphere can be explained by the selective growth and sedimentation of aerosol particles rich in nitric acid.
Abstract: It is argued that denitrification of the Arctic stratosphere can be explained by the selective growth and sedimentation of aerosol particles rich in nitric acid. Because reactive nitrogen species moderate the destruction of ozone by chlorine-catalyzed reactions by sequestering chlorine in reservoir species such as ClONO2, the possibility of the removal of reactive nitrogen without dehydration should be allowed for in attempts to model ozone depletion in the Arctic. Indeed, denitrification along with elevated concentrations of reactive chlorine observed in 1989 indicate that the Arctic was chemically primed for ozone destruction without an extended period of temperatures below the frost point, as is characteristic of the Antarctic.

Journal ArticleDOI
TL;DR: In this paper, a multwavelength airborne lidar system was used to measure polar stratospheric cloud (PSC) distributions in the wintertime Arctic stratosphere and their optical characteristics were measured with a multiview airborne LIDAR system as part of the 1989 Airborne Arctic Stratospheric Expedition.
Abstract: Polar stratospheric cloud (PSC) distributions in the wintertime Arctic stratosphere and their optical characteristics were measured with a multiwavelength airborne lidar system as part of the 1989 Airborne Arctic Stratospheric Expedition. PSCs were observed on 10 flights between January 6 and February 2, 1989, into the polar vortex. The PSCs were found in the 14-27 km altitude range in regions where the temperatures were less than 195 K. Two types of aerosols with different optical characteristics (Types 1a and 1b) were observed in PSCs thought to be composed of nitric acid trihydrate. Water ice PSCs (Type 2) were observed to have high scattering ratios (greater than 10) and high aerosol depolarizations (greater than 10 percent) at temperatures less than 190 K.

Journal ArticleDOI
TL;DR: Advanced techniques for computing an ordered FFT on a computer with external or hierarchical memory that require as few as two passes through the external data set, employ strictly unit stride, long vector transfers between main memory and external storage, and are well suited for vector and parallel computation are described.
Abstract: Conventional algorithms for computing large one-dimensional fast Fourier transforms (FFTs), even those algorithms recently developed for vector and parallel computers, are largely unsuitable for systems with external or hierarchical memory. The principal reason for this is the fact that most FFT algorithms require at least m complete passes through the data set to compute a 2 m -point FFT. This paper describes some advanced techniques for computing an ordered FFT on a computer with external or hierarchical memory. These algorithms (1) require as few as two passes through the external data set, (2) employ strictly unit stride, long vector transfers between main memory and external storage, (3) require only a modest amount of scratch space in main memory, and (4) are well suited for vector and parallel computation. Performance figures are included for implementations of some of these algorithms on Cray supercomputers. Of interest is the fact that a main memory version outperforms the current Cray library FFT routines on the CRAY-2, the CRAY X-MP, and the CRAY Y-MP systems. Using all eight processors on the CRAY Y-MP, this main memory routine runs at nearly two gigaflops.


Journal ArticleDOI
TL;DR: In this article, a database obtained by direct numerical simulation of turbulent channel flow was used to compute the three-dimensional frequency/wave-number spectrum of wall pressure fluctuations and to evaluate the similarity form for the power spectrum.
Abstract: A database obtained by direct numerical simulation of turbulent channel flow was used to compute the three‐dimensional frequency/wave‐number spectrum of wall‐pressure fluctuations. The spectrum was used to deduce scaling laws for pressure fluctuations and to evaluate the similarity form for the power spectrum. The convection velocity as a function of frequency, wave number, and spatial and temporal separations was calculated and compared with the experimental data. The problem of artificial ‘‘acoustics’’ in numerical simulation of incompressible flows is discussed.

Journal ArticleDOI
TL;DR: The relationship between the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) and coniferous forest leaf area index (LAI) over the western United States is examined in this article.

Journal ArticleDOI
TL;DR: In this paper, the authors used the theoretical photodissociation region models of Tielens and Hollenbach (1985, Ap. J., 291, 722) to construct simple diagrams which utilize line ratios and line to continuum ratios to determine the average gas density n, the average incident far-ultraviolet flux G sub o, and the temperature of the atomic gas T.
Abstract: Infrared and sub-millimeter observations are used in a simple procedure to determine average physical properties of the neutral interstellar medium in Galactic photodissociation regions as well as in ensembles of clouds which exist in the nuclei of luminous infrared galaxies. The relevant observations include the Infrared Astronomy Satellite (IRAS) infrared continuum measurements, infrared spectroscopy of the fine-structure lines of SiII 35 microns, OI 63 microns, and CII 158 microns, and the 2.6 mm CO (J=1-0) rotational transition. The diagnostic capabilities of the OI 145 microns line is also addressed. Researchers attribute these emission lines as well as the continuum to the atomic/molecular photodissociation region on the surfaces of molecular clouds which are illuminated by strong ultraviolet fields. They use the theoretical photodissociation region models of Tielens and Hollenbach (1985, Ap. J., 291, 722) to construct simple diagrams which utilize line ratios and line to continuum ratios to determine the average gas density n, the average incident far-ultraviolet flux G sub o, and the temperature of the atomic gas T.

Journal ArticleDOI
TL;DR: In this article, the three-dimensional time-dependent turbulent flow in a neutrally stratified Ekman layer over a smooth surface is computed numerically by directly solving the Navier-Stokes equations.
Abstract: The three-dimensional time-dependent turbulent flow in a neutrally stratified Ekman layer over a smooth surface is computed numerically by directly solving the Navier–Stokes equations. All the relevant scales of motion are included in the simulation so that no turbulence model is needed. Results of the simulations indicate that the horizontal component of the rotation vector has a significant influence on the turbulence; thus the ‘f-plane’ approximation fails. Differences as large as 20% in the geostrophic drag coefficient, u*/G, and 70% in the angle between the freestream velocity and the surface shear stress are found, depending on the latitude and the direction of the geostrophic wind. At 45° latitude, differences of 6 and 30% are noted in the drag coefficient and the shear angle, respectively, owing to the variation of the wind direction alone. Asymptotic similarity theory and a higher-order correction are first tested for the range of low Reynolds numbers simulated, and then used to predict the friction velocity and stress direction at the surface for flows at arbitrary Reynolds number. A model for the variation of these quantities with latitude and wind angle is also proposed which gives an acceptable fit to the simulation results. No large-scale longitudinal vortices are found in the velocity fields, reinforcing the conjecture that unstable thermal stratification, in addition to inflectional instability, is required to produce and maintain the large-scale rolls observed in the Earth's boundary layer. Comparisons of the Ekman layer with a related three-dimensional boundary layer reveal similarities of the mean profiles, as well as qualitative differences.