scispace - formally typeset
Search or ask a question
Institution

Ames Research Center

FacilityMountain View, California, United States
About: Ames Research Center is a facility organization based out in Mountain View, California, United States. It is known for research contribution in the topics: Mars Exploration Program & Planet. The organization has 13766 authors who have published 35830 publications receiving 1350076 citations. The organization is also known as: ARC & NASA Ames.


Papers
More filters
Journal ArticleDOI
TL;DR: A modified version of the linear/energy model is presented in which striate cells mutually inhibit one another, effectively normalizing their responses with respect to stimulus contrast, and shows that the new model explains a significantly larger body of physiological data.
Abstract: Simple cells in the striate cortex have been depicted as half-wave-rectified linear operators. Complex cells have been depicted as energy mechanisms, constructed from the squared sum of the outputs of quadrature pairs of linear operators. However, the linear/energy model falls short of a complete explanation of striate cell responses. In this paper, a modified version of the linear/energy model is presented in which striate cells mutually inhibit one another, effectively normalizing their responses with respect to stimulus contrast. This paper reviews experimental measurements of striate cell responses, and shows that the new model explains a significantly larger body of physiological data.

1,840 citations

01 Dec 1988
TL;DR: In this article, a set of objective criteria were found which describe regions in which the streamlines circulate, converge, or diverge, and form high streams of high velocity flow.
Abstract: Recent studies of turbulent shear flows have shown that many of their important kinematical and dynamical properties can be more clearly understood by describing the flows in terms of individual events or streamline patterns These events or flow regions are studied because they are associated with relatively large contributions to certain average properties of the flow, for example kinetic energy, Reynolds stress, or to particular processes in the flow, such as mixing and chemical reactions, which may be concentrated at locations where streamlines converge for fast chemical reactions (referred to as convergence or C regions), or in recirculating eddying regions for slow chemical reactions The aim of this project was to use the numerical simulations to develop suitable criteria for defining these eddying or vortical zones The C and streaming (S) zones were defined in order to define the whole flow field It is concluded that homogeneous and sheared turbulent flow fields are made up of characteristic flow zones: eddy, C, and S zones A set of objective criteria were found which describe regions in which the streamlines circulate, converge or diverge, and form high streams of high velocity flow

1,767 citations

Journal ArticleDOI
22 Feb 2001-Nature
TL;DR: Critically what it means to be an extremophile is examined, and the implications for evolution, biotechnology and especially the search for life in the Universe are examined.
Abstract: Each recent report of liquid water existing elsewhere in the Solar System has reverberated through the international press and excited the imagination of humankind. Why? Because in the past few decades we have come to realize that where there is liquid water on Earth, virtually no matter what the physical conditions, there is life. What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harbouring 'extremophiles'. This realization, coupled with new data on the survival of microbes in the space environment and modelling of the potential for transfer of life between celestial bodies, suggests that life could be more common than previously thought. Here we examine critically what it means to be an extremophile, and the implications of this for evolution, biotechnology and especially the search for life in the Universe.

1,738 citations

01 Oct 1992
TL;DR: In this article, two new versions of the k-omega two-equation turbulence model are presented, the baseline model and the Shear-Stress Transport model, which is based on the BSL model, but has the additional ability to account for the transport of the principal shear stress in adverse pressure gradient boundary layers.
Abstract: Two new versions of the k-omega two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original k-omega model of Wilcox, but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner 50 percent of the boundary-layer but changes gradually to the high Reynolds number Jones-Launder k-epsilon model (in a k-omega formulation) towards the boundary-layer edge. The new model is also virtually identical to the Jones-Lauder model for free shear layers. The second version of the model is called Shear-Stress Transport (SST) model. It is based on the BSL model, but has the additional ability to account for the transport of the principal shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear stress is proportional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different flowfields. The results of the BSL model are similar to those of the original k-omega model, but without the undesirable freestream dependency. The predictions of the SST model are also independent of the freestream values and show excellent agreement with experimental data for adverse pressure gradient boundary-layer flows.

1,709 citations

Journal ArticleDOI
TL;DR: The K2 mission as discussed by the authors uses an innovative way of operating the Kepler spacecraft to observe target fields along the ecliptic for the next 2-3 years, with an estimated photometric precision near 400 ppm in a single 30 minute observation.
Abstract: The K2 mission will make use of the Kepler spacecraft and its assets to expand upon Kepler's groundbreaking discoveries in the fields of exoplanets and astrophysics through new and exciting observations. K2 will use an innovative way of operating the spacecraft to observe target fields along the ecliptic for the next 2-3 years. Early science commissioning observations have shown an estimated photometric precision near 400 ppm in a single 30 minute observation, and a 6-hr photometric precision of 80 ppm (both at V = 12). The K2 mission offers long-term, simultaneous optical observation of thousands of objects at a precision far better than is achievable from ground-based telescopes. Ecliptic fields will be observed for approximately 75 days enabling a unique exoplanet survey which fills the gaps in duration and sensitivity between the Kepler and TESS missions, and offers pre-launch exoplanet target identification for JWST transit spectroscopy. Astrophysics observations with K2 will include studies of young open clusters, bright stars, galaxies, supernovae, and asteroseismology.

1,672 citations


Authors

Showing all 13820 results

NameH-indexPapersCitations
Hongjie Dai197570182579
Daniel J. Jacob16265676530
Reinhard Genzel15976884530
Jerrold M. Olefsky14359577356
Diego F. Torres13794872180
Robert H. Brown136117479247
Gerald M. Reaven13379980351
William T. Reach13153590496
Peter F. Michelson12943057878
Peter M. Vitousek12735296184
Jing Kong12655372354
Bo Barker Jørgensen12640049578
Jon M. Jenkins12658162929
Sanmay Ganguly12483667512
Kenneth C. Freeman12387954401
Network Information
Related Institutions (5)
California Institute of Technology
146.6K papers, 8.6M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

University of Maryland, College Park
155.9K papers, 7.2M citations

88% related

Pennsylvania State University
196.8K papers, 8.3M citations

87% related

Princeton University
146.7K papers, 9.1M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202281
2021810
2020887
2019929
2018908