scispace - formally typeset
Search or ask a question
Institution

Ames Research Center

FacilityMountain View, California, United States
About: Ames Research Center is a facility organization based out in Mountain View, California, United States. It is known for research contribution in the topics: Mars Exploration Program & Planet. The organization has 13766 authors who have published 35830 publications receiving 1350076 citations. The organization is also known as: ARC & NASA Ames.


Papers
More filters
Journal ArticleDOI
Jing Li1, Yijiang Lu1, Qi Ye1, Martin Cinke1, Jie Han1, Meyya Meyyappan1 
TL;DR: A gas sensor fabricated by the simple casting of single-walled carbon nanotubes (SWNTs) on an interdigitated electrode (IDE) is presented for gas and organic vapor detection at room temperature.
Abstract: A gas sensor, fabricated by the simple casting of single-walled carbon nanotubes (SWNTs) on an interdigitated electrode (IDE), is presented for gas and organic vapor detection at room temperature. The sensor responses are linear for concentrations of sub ppm to hundreds of ppm with detection limits of 44 ppb for NO2 and 262 ppb for nitrotoluene. The time is on the order of seconds for the detection response and minutes for the recovery. The variation of the sensitivity is less than 6% for all of the tested devices, comparable with commercial metal oxide or polymer microfilm sensors while retaining the room-temperature high sensitivity of the SWNT transistor sensors and manufacturability of the commercial sensors. The extended detection capability from gas to organic vapors is attributed to direct charge transfer on individual semiconducting SWNT conductivity with additional electron hopping effects on intertube conductivity through physically adsorbed molecules between SWNTs.

1,648 citations

Journal ArticleDOI
TL;DR: The Infrared Spectrograph (IRS) as discussed by the authors is one of the three science instruments on the Spitzer Space Telescope and is optimized to take full advantage of the very low background in the space environment.
Abstract: The Infrared Spectrograph (IRS) is one of three science instruments on the Spitzer Space Telescope .T he IRS comprises four separate spectrograph modules covering the wavelength range from 5.3 to 38 � m with spectral resolutions, R ¼ k=� k � 90 and 600, and it was optimized to take full advantage of the very low background in the space environment. The IRS is performing at or better than the prelaunch predictions. An autonomous target acquisition capability enables the IRS to locate the mid-infrared centroid of a source, providing the information so that the spacecraft can accurately offset that centroid to a selected slit. This feature is particularly useful when taking spectra of sources with poorly known coordinates. An automated data-reduction pipeline has been developed at the Spitzer Science Center. Subject headingg infrared: general — instrumentation: spectrographs — space vehicles: instruments

1,628 citations

Journal ArticleDOI
TL;DR: Germano et al. as discussed by the authors generalized the dynamic subgrid-scale (SGS) model for the large eddy simulation (LES) of compressible flows and transport of a scalar.
Abstract: The dynamic subgrid-scale (SGS) model of Germano et al. (1991) is generalized for the large eddy simulation (LES) of compressible flows and transport of a scalar. The model was applied to the LES of decaying isotropic turbulence, and the results are in excellent agreement with experimental data and direct numerical simulations. The expression for the SGS turbulent Prandtl number was evaluated using direct numerical simulation (DNS) data in isotropic turbulence, homogeneous shear flow, and turbulent channel flow. The qualitative behavior of the model for turbulent Prandtl number and its dependence on molecular Prandtl number, direction of scalar gradient, and distance from the wall are in accordance with the total turbulent Prandtl number from the DNS data.

1,588 citations

Journal ArticleDOI
TL;DR: The first data release of SDSS-III is described in this article, which includes five-band imaging of roughly 5200 deg2 in the southern Galactic cap, bringing the total footprint of the Sloan Digital Sky Survey imaging to 14,555 deg2, or over a third of the Celestial Sphere.
Abstract: The Sloan Digital Sky Survey (SDSS) started a new phase in 2008 August, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Lyα forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg2 in the southern Galactic cap, bringing the total footprint of the SDSS imaging to 14,555 deg2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Exploration (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameter pipeline, which has better determination of metallicity for high-metallicity stars.

1,578 citations

Journal ArticleDOI
TL;DR: In this article, direct numerical simulation (DNS) of turbulent flows has been reviewed and the complementary nature of experiments and computations in turbulence research has been illustrated, as well as how DNS has impacted turbulence modeling and provided further insight into the structure of turbulent boundary layers.
Abstract: ▪ Abstract We review the direct numerical simulation (DNS) of turbulent flows. We stress that DNS is a research tool, and not a brute-force solution to the Navier-Stokes equations for engineering problems. The wide range of scales in turbulent flows requires that care be taken in their numerical solution. We discuss related numerical issues such as boundary conditions and spatial and temporal discretization. Significant insight into turbulence physics has been gained from DNS of certain idealized flows that cannot be easily attained in the laboratory. We discuss some examples. Further, we illustrate the complementary nature of experiments and computations in turbulence research. Examples are provided where DNS data has been used to evaluate measurement accuracy. Finally, we consider how DNS has impacted turbulence modeling and provided further insight into the structure of turbulent boundary layers.

1,572 citations


Authors

Showing all 13820 results

NameH-indexPapersCitations
Hongjie Dai197570182579
Daniel J. Jacob16265676530
Reinhard Genzel15976884530
Jerrold M. Olefsky14359577356
Diego F. Torres13794872180
Robert H. Brown136117479247
Gerald M. Reaven13379980351
William T. Reach13153590496
Peter F. Michelson12943057878
Peter M. Vitousek12735296184
Jing Kong12655372354
Bo Barker Jørgensen12640049578
Jon M. Jenkins12658162929
Sanmay Ganguly12483667512
Kenneth C. Freeman12387954401
Network Information
Related Institutions (5)
California Institute of Technology
146.6K papers, 8.6M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

University of Maryland, College Park
155.9K papers, 7.2M citations

88% related

Pennsylvania State University
196.8K papers, 8.3M citations

87% related

Princeton University
146.7K papers, 9.1M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202281
2021810
2020887
2019929
2018908