scispace - formally typeset
Search or ask a question
Institution

Amirkabir University of Technology

EducationTehran, Iran
About: Amirkabir University of Technology is a education organization based out in Tehran, Iran. It is known for research contribution in the topics: Nonlinear system & Fuzzy logic. The organization has 15254 authors who have published 31165 publications receiving 487551 citations. The organization is also known as: Tehran Polytechnic & Tehran Polytechnic University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new nano-filler based on graphene oxide is recommended for this type of coating and the results obtained from different characterizations showed successful silanization and dispersion of graphene oxide in the silane hybrid coating.
Abstract: Silane coating has been used as a steel surface treatment for the promotion of adhesion between a substrate and an organic coating. However, the corrosion protection properties of this coating are not sufficient. Incorporation of various additives and nano-fillers into the coating is a promising way to improve the coating barrier action. In this paper a new nano-filler based on graphene oxide is recommended for this type of coating. The graphene oxide is silanized in the first step through a sol–gel route by using aminopropyl triethoxysilane (ATPES). Then, it is employed in a hybrid silane coating based on the mixture of aminopropyl triethoxysilane and tetraethyl orthosilicate (TEOS). The graphene oxide functionalization was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The silane coatings filled with silanized and untreated graphene oxide were also characterized by FT-IR, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results obtained from different characterizations showed successful silanization and dispersion of graphene oxide in the silane hybrid coating. The silane coating containing silanized graphene oxide showed superior corrosion protective performance compared to the unfilled silane coating in electrochemical impedance spectroscopy (EIS) and polarization measurements, indicating the considerable corrosion barrier effect of this nano-filler.

107 citations

Journal ArticleDOI
TL;DR: In this article, the weighted principal component analysis technique is employed for reconstruction of reflectance spectra of surface colors from the related tristimulus values A dynamic eigenvector subspace based on applying certain weights to reflectance data of Munsell color chips has been formed for each particular sample and the color difference value between the target, and Munsell dataset is chosen as a criterion for determination of weighting factors Implementation of this method enables one to increase the influence of samples which are closer to target on extracted principal eigenvectors and subsequently diminish the effect of those samples which benefit from
Abstract: The weighted principal component analysis technique is employed for reconstruction of reflectance spectra of surface colors from the related tristimulus values A dynamic eigenvector subspace based on applying certain weights to reflectance data of Munsell color chips has been formed for each particular sample and the color difference value between the target, and Munsell dataset is chosen as a criterion for determination of weighting factors Implementation of this method enables one to increase the influence of samples which are closer to target on extracted principal eigenvectors and subsequently diminish the effect of those samples which benefit from higher amount of color difference The performance of the suggested method is evaluated in spectral reflectance reconstruction of three different collections of colored samples by the use of the first three Munsell bases The resulting spectra show considerable improvements in terms of root mean square error between the actual and reconstructed reflectance curves as well as CIELAB color difference under illuminant A in comparison to those obtained from the standard PCA method © 2008 Wiley Periodicals, Inc Col Res Appl, 33, 360–371, 2008

106 citations

Journal ArticleDOI
TL;DR: In this article, the current theoretical models for nanofluid viscosity prediction are only applicable across a wide range of convective heat transfer phenomena, such as convective convective heating and cooling.
Abstract: Nanofluid viscosity is an important physical property in convective heat transfer phenomena. However, the current theoretical models for nanofluid viscosity prediction are only applicable across a ...

106 citations

Journal ArticleDOI
TL;DR: The use of solvent‐free microfluidics to fine‐tune the physical and chemical properties of chitosan nanoparticles for drug delivery is demonstrated and the loading efficiency of hydrophobic drugs into the nanoparticles increases significantly from previous work to over 95%.
Abstract: The use of solvent-free microfluidics to fine-tune the physical and chemical properties of chitosan nanoparticles for drug delivery is demonstrated. Nanoparticle self-assembly is driven by pH changes in a water environment, which increases biocompatibility by avoiding organic solvent contamination common with traditional techniques. Controlling the time of mixing (2.5–75 ms) during nanoparticle self-assembly enables us to adjust nanoparticle size and surface potential in order to maximize cellular uptake, which in turn dramatically increases drug effectiveness. The compact nanostructure of these nanoparticles preserves drug potency better than previous nanoparticles, and is more stable during long-term circulation at physiological pH. However, when the nanoparticles encounter a tumor cell and the associated drop in pH, the drug contents are released. Moreover, the loading efficiency of hydrophobic drugs into the nanoparticles increases significantly from previous work to over 95%. The microfluidic techniques used here have applications not just for drug-carrying nanoparticle fabrication, but also for the better control of virtually any self-assembly process.

106 citations

Journal ArticleDOI
TL;DR: It was found that subjects in contact with single axis loads voluntarily modified their hand stiffness orientation such that changes to the direction of maximum stiffness mirrored the directionof applied load.
Abstract: We used a robotic device to test the idea that impedance control involves a process of learning or adaptation that is acquired over time and permits the voluntary control of the pattern of stiffness at the hand. The tests were conducted in statics. Subjects were trained over the course of 3 successive days to resist the effects of one of three different kinds of mechanical loads: single axis loads acting in the lateral direction, single axis loads acting in the forward/backward direction, and isotropic loads that perturbed the limb in eight directions about a circle. We found that subjects in contact with single axis loads voluntarily modified their hand stiffness orientation such that changes to the direction of maximum stiffness mirrored the direction of applied load. In the case of isotropic loads, a uniform increase in endpoint stiffness was observed. Using a physiologically realistic model of two-joint arm movement, the experimentally determined pattern of impedance change could be replicated by assuming that coactivation of elbow and double joint muscles was independent of coactivation of muscles at the shoulder. Moreover, using this pattern of coactivation control we were able to replicate an asymmetric pattern of rotation of the stiffness ellipse that was observed empirically. These findings are consistent with the idea that arm stiffness is controlled through the use of at least two independent co-contraction commands.

106 citations


Authors

Showing all 15352 results

NameH-indexPapersCitations
Ali Mohammadi106114954596
Mehdi Dehghan8387529225
Morteza Mahmoudi8333426229
Gaurav Sharma82124431482
Vladimir A. Rakov6745914918
Mohammad Reza Ganjali65103925238
Bahram Ramezanzadeh6235212946
Muhammad Sahimi6248117334
Niyaz Mohammad Mahmoodi6121810080
Amir A. Zadpoor6129411653
Mohammad Hossein Ahmadi6047711659
Goodarz Ahmadi6077817735
Maryam Kavousi5925822009
Keith W. Hipel5854314045
Danial Jahed Armaghani552128400
Network Information
Related Institutions (5)
Sharif University of Technology
31.3K papers, 526.8K citations

97% related

University of Tehran
65.3K papers, 958.5K citations

93% related

Tarbiat Modares University
32.6K papers, 526.3K citations

92% related

Islamic Azad University
113.4K papers, 1.2M citations

92% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202346
2022216
20212,493
20202,359
20192,368
20182,266