scispace - formally typeset
Search or ask a question
Institution

Amirkabir University of Technology

EducationTehran, Iran
About: Amirkabir University of Technology is a education organization based out in Tehran, Iran. It is known for research contribution in the topics: Nonlinear system & Fuzzy logic. The organization has 15254 authors who have published 31165 publications receiving 487551 citations. The organization is also known as: Tehran Polytechnic & Tehran Polytechnic University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the equilibrium and stability equations of rectangular functionally graded plates (FGPs) are determined using the variational approach, where the material properties vary with the power product form of thickness coordinate variable z.
Abstract: In the present article, equilibrium and stability equations of rectangular functionally graded plates (FGPs) are determined using the variational approach. Derivation of equations are based on the classical plate theory. It is assumed that the material properties vary with the power product form of thickness coordinate variable z. Equilibrium and stability equations for FGPs are the same as the equations for homogeneous plates. The equilibrium and stability equations are employed to study the buckling behaviour of functionally graded plates with all edges simply supported and subjected to in-plane loading conditions. By equating power law index to zero, predicted relation is reduced to the buckling equation of homogeneous plates which is available in the literature.

248 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the latest achievements in the application of PVA-based gel polymer electrolytes for flexible supercapacitors and new findings on the improvement of their ionic conductivity, mechanical properties, and overall electrochemical performance.
Abstract: Flexible solid-state supercapacitors with high power density and rate performance, long cycle life, high safety and ease of fabrication are highly desirable. They can be used in an emerging market of flexible and wearable electronic gadgets. Gel polymer electrolytes are being considered as one of the best candidates. They typically have higher ionic conductivity than solid electrolytes without safety concerns of liquid electrolytes. This article reviews the latest achievements in the application of PVA-based gel polymer electrolytes for flexible supercapacitors and new findings on the improvement of their ionic conductivity, mechanical properties, and overall electrochemical performance. Several current kinds of research attempt to overcome these challenges with the main goal of improving ionic conductivity and electrochemical properties. There is no limitation for ionic conductivity of gel electrolyte because high ionic conductivity can lead to higher specific capacitance and also sufficient electrochemical performance. A recent study of gel electrolytes has shown the highest ionic conductivity of 82 mS.cm−1 for PVA/H2SO4/Glutaraldehyde/H2O which results in a large areal capacitance of 488 mF.cm−2 (100 reference).

248 citations

Journal ArticleDOI
TL;DR: Based on the data of present investigation, one could conclude that the CS/n-ZnO being a biocompatible, eco-friendly and low-cost adsorbent might be a suitable alternative for elimination of dyes from colored aqueous solutions.

248 citations

Journal ArticleDOI
TL;DR: A novel hydrometallurgical process was proposed for selective recovery of Cu, Ag, Au and Pd from waste printed circuit boards (PCBs) by using two consecutive sulfuric acid leaching steps in the presence of H2O2 as oxidizing agents.

248 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the structural, mechanical properties and wear resistance of FSP-processed materials as a function of volume fraction of SiC particles and found that adding micro-and nano-sized particles decreases the tensile strength and percent elongation.
Abstract: In this experiment, copper-base composites reinforced with 30 nm and 5 μm SiC particles are fabricated on the surface of a purecopper sheetvia friction stir processing (FSP). Microstructure, mechanical properties and wear resistance of friction stir processed (FSPed) materials are investigated as a function of volume fraction of SiC particles. Results show that, applying FSP, without SiC particles, increases the percent elongation significantly (more than 2.5 times) and decreases copper's strength. Adding micro- and nano-sized SiC particles decreases the tensile strength and percent elongation. Increasing the volume fraction or decreasing the reinforcing particle size enhances the tensile strength and wear resistance and lowers the percent elongation.

248 citations


Authors

Showing all 15352 results

NameH-indexPapersCitations
Ali Mohammadi106114954596
Mehdi Dehghan8387529225
Morteza Mahmoudi8333426229
Gaurav Sharma82124431482
Vladimir A. Rakov6745914918
Mohammad Reza Ganjali65103925238
Bahram Ramezanzadeh6235212946
Muhammad Sahimi6248117334
Niyaz Mohammad Mahmoodi6121810080
Amir A. Zadpoor6129411653
Mohammad Hossein Ahmadi6047711659
Goodarz Ahmadi6077817735
Maryam Kavousi5925822009
Keith W. Hipel5854314045
Danial Jahed Armaghani552128400
Network Information
Related Institutions (5)
Sharif University of Technology
31.3K papers, 526.8K citations

97% related

University of Tehran
65.3K papers, 958.5K citations

93% related

Tarbiat Modares University
32.6K papers, 526.3K citations

92% related

Islamic Azad University
113.4K papers, 1.2M citations

92% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202346
2022216
20212,493
20202,359
20192,368
20182,266