scispace - formally typeset
Search or ask a question
Institution

Amirkabir University of Technology

EducationTehran, Iran
About: Amirkabir University of Technology is a education organization based out in Tehran, Iran. It is known for research contribution in the topics: Nonlinear system & Finite element method. The organization has 15254 authors who have published 31165 publications receiving 487551 citations. The organization is also known as: Tehran Polytechnic & Tehran Polytechnic University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a novel method based on Pickering emulsion polymerization has been introduced that assures fine dispersion and enhances loading for fabricating high performance polymer-graphene nanocomposites.
Abstract: Dispersion of graphene in a polymer matrix as mono layers is an important step towards fabricating high performance polymer–graphene nanocomposites. In this paper, a novel method based on Pickering emulsion polymerization has been introduced that assures fine dispersion and enhances loading. The major idea is to use a high affinity of graphene oxide (GO) for assembly at the liquid–liquid interface for Pickering emulsion polymerization. A guideline for ensuring stable hybrid colloids of polymer–graphene oxide with an appropriate polymer particle size has been introduced. Then a system of poly (methyl methacrylate) (PMMA)–GO has been selected and the nanocomposites have been made by Pickering emulsion polymerization to examine the theory. TEM studies of the products show various interesting arrangements of PMMA and GO for a different size ratio of nanolayers to polymer particles. The new method paves the way for an environmentally benign process for the production of high quality polymer graphene nanocomposites as it is water-based (no organic solvent is employed) and soap free. Furthermore, resulting hybrid particles were melt mixed with PMMA as a master batch. The resulting nanocomposites with 0.3 wt% graphene showed improved thermal stability and stiffness.

190 citations

Journal ArticleDOI
TL;DR: In this paper, an array of ZnO nanorod arrays was synthesized on a glass substrate by a hydrothermal method at a low temperature of 70˚°C and the effect of pH > 7 of the hydrated zinc nitrate-NaOH precursor on the morphology and topography (e.g., size, surface area and roughness), optical characteristics, optical transmission and band-gap energy), hydrophilicity and antibacterial activity was investigated.
Abstract: Arrays of ZnO nanorods were synthesized on ZnO seed layer/glass substrates by a hydrothermal method at a low temperature of 70 °C. The effect of pH > 7 of the hydrated zinc nitrate–NaOH precursor on the morphology and topography (e.g. size, surface area and roughness), the optical characteristics (e.g. optical transmission and band-gap energy), hydrophilicity and antibacterial activity of the grown ZnO nanostructure and nanorod coatings were investigated. For pH = 11.33 of the precursor (NaOH concentration of 0.10M), a fast growth of ZnO nanorods on the seed layer (length of ~1 µm in 1.5 h) was observed. The fast growth of the ZnO nanorods resulted in a significant reduction in the optical band-gap energy of the nanorod coating, which was attributed to the formation of more defects in the nanorods during their fast growth. The surface of the ZnO nanorod arrays was relatively hydrophilic (with a water contact angle of 16°) even after the subtraction of their surface roughness effect (with a contact angle of ca 27°). This hydrophilicity of the ZnO nanorods was assigned to the observed surface OH bonds. These characteristics caused the ZnO nanorod arrays to show an excellent UV-induced photocatalytic degradation of Escherichia coli bacteria. Furthermore, the synthesized ZnO nanorods were found to be strong photo-induced antibacterial material, even without considering their high surface area ratio.

189 citations

Journal ArticleDOI
TL;DR: A review of recent developments on the area of the cement-based composites reinforced by hybrid short fibers can be found in this paper, where chemical, physical and mechanical properties of fibers on the performance of fiber reinforced concretes (FRC).

188 citations

Journal ArticleDOI
TL;DR: In this article, the effect of the type and form of the alkaline activator, the dosage of alkali and the SiO2/Na2O ratio (silica modulus, Ms) when using water-glass solutions and different curing conditions on the geopolymerisation of natural pozzolans has been investigated and characterised.
Abstract: It is possible to synthesize environmentally friendly cementitious construction materials from alkali-activated natural pozzolans. The effect of the alkaline medium on the strength of alkali-activated natural pozzolans has been investigated and characterised. This paper highlights the effect of the type and form of the alkaline activator, the dosage of alkali and the SiO2/Na2O ratio (silica modulus, Ms) when using water–glass solutions and different curing conditions on the geopolymerisation of natural pozzolans. Activation of natural and calcined pozzolan for production of geopolymeric binder was verified by using Taftan andesite and Shahindej dacite from Iran as a solid precursor. The optimum range for each factor is suggested based on the different effects they have on compressive strength. The concentration of dissolving silicon, aluminium and calcium in alkaline solution, the formation of gel phase and the factors affecting this have been studied by using leaching tests, ICP–AES, and FTIR.

188 citations


Authors

Showing all 15352 results

NameH-indexPapersCitations
Ali Mohammadi106114954596
Mehdi Dehghan8387529225
Morteza Mahmoudi8333426229
Gaurav Sharma82124431482
Vladimir A. Rakov6745914918
Mohammad Reza Ganjali65103925238
Bahram Ramezanzadeh6235212946
Muhammad Sahimi6248117334
Niyaz Mohammad Mahmoodi6121810080
Amir A. Zadpoor6129411653
Mohammad Hossein Ahmadi6047711659
Goodarz Ahmadi6077817735
Maryam Kavousi5925822009
Keith W. Hipel5854314045
Danial Jahed Armaghani552128400
Network Information
Related Institutions (5)
Sharif University of Technology
31.3K papers, 526.8K citations

97% related

University of Tehran
65.3K papers, 958.5K citations

93% related

Tarbiat Modares University
32.6K papers, 526.3K citations

92% related

Islamic Azad University
113.4K papers, 1.2M citations

92% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202346
2022216
20212,493
20202,359
20192,368
20182,266