scispace - formally typeset
Search or ask a question
Institution

Amirkabir University of Technology

EducationTehran, Iran
About: Amirkabir University of Technology is a education organization based out in Tehran, Iran. It is known for research contribution in the topics: Nonlinear system & Fuzzy logic. The organization has 15254 authors who have published 31165 publications receiving 487551 citations. The organization is also known as: Tehran Polytechnic & Tehran Polytechnic University.


Papers
More filters
Journal ArticleDOI
TL;DR: The cell viability results indicated that DOX loaded PEO/CS/GO/DOX nanofibrous scaffold could be used as an alternative source of DOX compared with free DOX to avoid the side effects of freeDOX.

149 citations

Journal ArticleDOI
TL;DR: The results showed that immobilized titania nanophotocatalysis capable to degradation and toxicity reduction of acid dye textile wastewater was showed and the residual acute toxicity was reduced.
Abstract: The feasibility and performance of photocatalytic degradation and toxicity reduction of textile dye (Acid Blue 25) have been studied at pilot scale in an immobilized titania nanoparticle photocatalytic reactor. UV–Vis, Ion Chromatography (IC) and chemical oxygen demand (COD) analyses were employed to obtain the details of the photocatalytic dye degradation. The effects of operational parameters such as H2O2, pH and dye concentration on the photocatalytic degradation of Acid Blue 25 were investigated. The aliphatic carboxylic acid intermediates and inorganic anions generated during the dye degradation process were analyzed. Daphnia magna bioassay has been used to test the progress of toxicity during the treatment process. Total disappearance of dye was attained. During the photocatalytic treatment process, the residual acute toxicity was reduced. The results showed that immobilized titania nanophotocatalysis capable to degradation and toxicity reduction of acid dye textile wastewater.

149 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a numerical method for the solution of the time-fractional nonlinear Schrodinger equation in one and two dimensions which appear in quantum mechanics.
Abstract: In this paper, we propose a numerical method for the solution of the time-fractional nonlinear Schrodinger equation in one and two dimensions which appear in quantum mechanics. In this method we first approximate the time fractional derivative of the mentioned equation by a scheme of order O ( τ 2 − α ) , 0 α 1 then we will use the Kansa approach to approximate the spatial derivatives. The meshless method has already proved successful in standard quantum mechanics as well as for several other engineering and physical problems. The aim of this paper is to show that the meshless method based on the radial basis functions and collocation approach is also suitable for the treatment of the fractional quantum mechanics. The results of numerical experiments are compared with analytical solution to confirm the accuracy and efficiency of the presented scheme.

149 citations

Journal ArticleDOI
TL;DR: In this paper, homotopy perturbation method (HPM), variational iteration method (VIM) and the Adomian decomposition method (ADM) are applied to solve the Fitzhugh-Nagumo equation.
Abstract: In this work, the homotopy perturbation method (HPM), the variational iteration method (VIM) and the Adomian decomposition method (ADM) are applied to solve the Fitzhugh–Nagumo equation. Numerical solutions obtained by these methods when compared with the exact solutions reveal that the obtained solutions produce high accurate results. The results show that the HPM, the VIM and the ADM are of high accuracy and are efficient for solving the Fitzhugh–Nagumo equation. Also the results demonstrate that the introduced methods are powerful tools for solving the nonlinear partial differential equations. Copyright © 2010 John Wiley & Sons, Ltd.

149 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed an extendable single-stage multi-input dc-dc/ac boost converter, which includes two bidirectional ports in the converter's central part to interface output load and battery storage and several unidirectional input ports to get powers from different input dc sources.
Abstract: This paper presents a new extendable single-stage multi-input dc-dc/ac boost converter. The proposed structure comprises of two bidirectional ports in the converter's central part to interface output load and battery storage, and several unidirectional input ports to get powers from different input dc sources. In fact, the proposed topology consists of two sets of parallel dc-dc boost converters, which are actively controlled to produce two independent output voltage components. Choosing two pure dc or two dc-biased sinusoidal values as the converter reference voltages, situations of the converter operating in two dc-dc and dc-ac modes are provided, respectively. The proposed converter utilizes minimum number of power switches and is able to step up the low-level input dc voltages into a high-level output dc or ac voltage without needing any output filter. The converter control system includes several current regulator loops for input dc sources and two voltage regulator loops for generating the desired output voltage components, resulting in autonomously charging/discharging the battery to balance the power flow. Due to the converter inherent multi-input multioutput control system, the small signal model of the converter is extracted and then the pole-placement control strategy via integral state feedback is applied for achieving the converter control laws. The validity and effectiveness of the proposed converter and its control performance are verified by simulation and experimental results.

149 citations


Authors

Showing all 15352 results

NameH-indexPapersCitations
Ali Mohammadi106114954596
Mehdi Dehghan8387529225
Morteza Mahmoudi8333426229
Gaurav Sharma82124431482
Vladimir A. Rakov6745914918
Mohammad Reza Ganjali65103925238
Bahram Ramezanzadeh6235212946
Muhammad Sahimi6248117334
Niyaz Mohammad Mahmoodi6121810080
Amir A. Zadpoor6129411653
Mohammad Hossein Ahmadi6047711659
Goodarz Ahmadi6077817735
Maryam Kavousi5925822009
Keith W. Hipel5854314045
Danial Jahed Armaghani552128400
Network Information
Related Institutions (5)
Sharif University of Technology
31.3K papers, 526.8K citations

97% related

University of Tehran
65.3K papers, 958.5K citations

93% related

Tarbiat Modares University
32.6K papers, 526.3K citations

92% related

Islamic Azad University
113.4K papers, 1.2M citations

92% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202346
2022216
20212,493
20202,359
20192,368
20182,266