scispace - formally typeset
Search or ask a question
Institution

Apollo Hospital, Indraprastha

HealthcareNew Delhi, India
About: Apollo Hospital, Indraprastha is a healthcare organization based out in New Delhi, India. It is known for research contribution in the topics: Transplantation & Population. The organization has 654 authors who have published 794 publications receiving 9139 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The role of AI as a decisive technology to analyze, prepare us for prevention and fight with COVID-19 (Coronavirus) and other pandemics is reviewed and seven significant applications of AI for CO VID-19 pandemic are identified.
Abstract: Background and aims Healthcare delivery requires the support of new technologies like Artificial Intelligence (AI), Internet of Things (IoT), Big Data and Machine Learning to fight and look ahead against the new diseases. We aim to review the role of AI as a decisive technology to analyze, prepare us for prevention and fight with COVID-19 (Coronavirus) and other pandemics. Methods The rapid review of the literature is done on the database of Pubmed, Scopus and Google Scholar using the keyword of COVID-19 or Coronavirus and Artificial Intelligence or AI. Collected the latest information regarding AI for COVID-19, then analyzed the same to identify its possible application for this disease. Results We have identified seven significant applications of AI for COVID-19 pandemic. This technology plays an important role to detect the cluster of cases and to predict where this virus will affect in future by collecting and analyzing all previous data. Conclusions Healthcare organizations are in an urgent need for decision-making technologies to handle this virus and help them in getting proper suggestions in real-time to avoid its spread. AI works in a proficient way to mimic like human intelligence. It may also play a vital role in understanding and suggesting the development of a vaccine for COVID-19. This result-driven technology is used for proper screening, analyzing, prediction and tracking of current patients and likely future patients. The significant applications are applied to tracks data of confirmed, recovered and death cases.

858 citations

Journal ArticleDOI
06 Sep 2021-Nature
TL;DR: The B.617.1.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike as discussed by the authors.
Abstract: The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.

839 citations

Journal ArticleDOI
TL;DR: The role of HER2 in various cancers and therapeutic modalities available targeting HER2 are discussed and the results have been proved disappointing in other HER2 overexpressing cancers.
Abstract: Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Dimerization of the receptor results in the autophosphorylation of tyrosine residues within the cytoplasmic domain of the receptors and initiates a variety of signaling pathways leading to cell proliferation and tumorigenesis. Amplification or overexpression of HER2 occurs in approximately 15–30% of breast cancers and 10–30% of gastric/gastroesophageal cancers and serves as a prognostic and predictive biomarker. HER2 overexpression has also been seen in other cancers like ovary, endometrium, bladder, lung, colon, and head and neck. The introduction of HER2 directed therapies has dramatically influenced the outcome of patients with HER2 positive breast and gastric/gastroesophageal cancers; however, the results have been proved disappointing in other HER2 overexpressing cancers. This review discusses the role of HER2 in various cancers and therapeutic modalities available targeting HER2.

701 citations

Journal ArticleDOI
TL;DR: Ten major technologies of Industry 4.0 can fulfil the requirements of customised face masks, gloves, and collect information for healthcare systems for proper controlling and treating of COVID-19 patients.
Abstract: Background and aims COVID 19 (Coronavirus) pandemic has created surge demand for essential healthcare equipment, medicines along with the requirement for advance information technologies applications. Industry 4.0 is known as the fourth industrial revolution, which has the potential to fulfil customised requirement during COVID-19 crisis. This revolution has started with the applications of advance manufacturing and digital information technologies. Methods A detailed review of the literature is done on the technologies of Industry 4.0 and their applications in the COVID-19 pandemic, using appropriate search words on the databases of PubMed, SCOPUS, Google Scholar and Research Gate. Results We found several useful technologies of Industry 4.0 which help for proper control and management of COVID-19 pandemic and these have been discussed in this paper. The available technologies of Industry 4.0 could also help the detection and diagnosis of COVID-19 and other related problems and symptoms. Conclusions Industry 4.0 can fulfil the requirements of customised face masks, gloves, and collect information for healthcare systems for proper controlling and treating of COVID-19 patients. We have discussed ten major technologies of Industry 4.0 which help to solve the problems of this virus. It is useful to provide day to day update of an infected patient, area-wise, age-wise and state-wise with proper surveillance systems. We also believe that the proper implementation of these technologies would help to enhance education and communication regarding public health. These Industry 4.0 technologies could provide a lot of innovative ideas and solution for fighting local and global medical emergencies.

482 citations


Authors

Showing all 655 results

NameH-indexPapersCitations
Sita Naik411404704
Abid Haleem393047178
Ambrish Mithal351576184
Mohd Javaid311573731
Raju Vaishya303973926
Abhijit Chowdhury291123278
Manish Bansal241102700
Anil C. Anand24752622
Veena Kalra231271699
Narendra N. Khanna19611174
Aditya V. Maheshwari1977936
Saurabh Agarwal1753950
Sunil Taneja171191047
Neerav Goyal17138915
Subash Gupta1664757
Network Information
Related Institutions (5)
Christian Medical College & Hospital
9.9K papers, 195.3K citations

85% related

Post Graduate Institute of Medical Education and Research
26.7K papers, 394.7K citations

83% related

All India Institute of Medical Sciences
40.1K papers, 640.4K citations

82% related

Maulana Azad Medical College
5.8K papers, 74.7K citations

82% related

Government Medical College, Thiruvananthapuram
10.3K papers, 83.4K citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20227
2021112
2020105
201954
201854
201775