scispace - formally typeset
Search or ask a question

Showing papers by "Applied Biosystems published in 2006"


Journal ArticleDOI
Leming Shi1, Laura H. Reid, Wendell D. Jones, Richard Shippy2, Janet A. Warrington3, Shawn C. Baker4, Patrick J. Collins5, Francoise de Longueville, Ernest S. Kawasaki6, Kathleen Y. Lee7, Yuling Luo, Yongming Andrew Sun7, James C. Willey8, Robert Setterquist7, Gavin M. Fischer9, Weida Tong1, Yvonne P. Dragan1, David J. Dix10, Felix W. Frueh1, Federico Goodsaid1, Damir Herman6, Roderick V. Jensen11, Charles D. Johnson, Edward K. Lobenhofer12, Raj K. Puri1, Uwe Scherf1, Jean Thierry-Mieg6, Charles Wang13, Michael A Wilson7, Paul K. Wolber5, Lu Zhang7, William Slikker1, Shashi Amur1, Wenjun Bao14, Catalin Barbacioru7, Anne Bergstrom Lucas5, Vincent Bertholet, Cecilie Boysen, Bud Bromley, Donna Brown, Alan Brunner2, Roger D. Canales7, Xiaoxi Megan Cao, Thomas A. Cebula1, James J. Chen1, Jing Cheng, Tzu Ming Chu14, Eugene Chudin4, John F. Corson5, J. Christopher Corton10, Lisa J. Croner15, Christopher Davies3, Timothy Davison, Glenda C. Delenstarr5, Xutao Deng13, David Dorris7, Aron Charles Eklund11, Xiaohui Fan1, Hong Fang, Stephanie Fulmer-Smentek5, James C. Fuscoe1, Kathryn Gallagher10, Weigong Ge1, Lei Guo1, Xu Guo3, Janet Hager16, Paul K. Haje, Jing Han1, Tao Han1, Heather Harbottle1, Stephen C. Harris1, Eli Hatchwell17, Craig A. Hauser18, Susan D. Hester10, Huixiao Hong, Patrick Hurban12, Scott A. Jackson1, Hanlee P. Ji19, Charles R. Knight, Winston Patrick Kuo20, J. Eugene LeClerc1, Shawn Levy21, Quan Zhen Li, Chunmei Liu3, Ying Liu22, Michael Lombardi11, Yunqing Ma, Scott R. Magnuson, Botoul Maqsodi, Timothy K. McDaniel3, Nan Mei1, Ola Myklebost23, Baitang Ning1, Natalia Novoradovskaya9, Michael S. Orr1, Terry Osborn, Adam Papallo11, Tucker A. Patterson1, Roger Perkins, Elizabeth Herness Peters, Ron L. Peterson24, Kenneth L. Philips12, P. Scott Pine1, Lajos Pusztai25, Feng Qian, Hongzu Ren10, Mitch Rosen10, Barry A. Rosenzweig1, Raymond R. Samaha7, Mark Schena, Gary P. Schroth, Svetlana Shchegrova5, Dave D. Smith26, Frank Staedtler24, Zhenqiang Su1, Hongmei Sun, Zoltan Szallasi20, Zivana Tezak1, Danielle Thierry-Mieg6, Karol L. Thompson1, Irina Tikhonova16, Yaron Turpaz3, Beena Vallanat10, Christophe Van, Stephen J. Walker27, Sue Jane Wang1, Yonghong Wang6, Russell D. Wolfinger14, Alexander Wong5, Jie Wu, Chunlin Xiao7, Qian Xie, Jun Xu13, Wen Yang, Liang Zhang, Sheng Zhong28, Yaping Zong 
TL;DR: This study describes the experimental design and probe mapping efforts behind the MicroArray Quality Control project and shows intraplatform consistency across test sites as well as a high level of interplatform concordance in terms of genes identified as differentially expressed.
Abstract: Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, has raised concerns about the reliability of this technology. The MicroArray Quality Control (MAQC) project was initiated to address these concerns, as well as other performance and data analysis issues. Expression data on four titration pools from two distinct reference RNA samples were generated at multiple test sites using a variety of microarray-based and alternative technology platforms. Here we describe the experimental design and probe mapping efforts behind the MAQC project. We show intraplatform consistency across test sites as well as a high level of interplatform concordance in terms of genes identified as differentially expressed. This study provides a resource that represents an important first step toward establishing a framework for the use of microarrays in clinical and regulatory settings.

1,987 citations


Journal ArticleDOI
TL;DR: Peptide MRM measurements in plasma digests thus provide a rapid and specific assay platform for biomarker validation, one that can be extended to lower abundance proteins by enrichment of specific target peptides (stable isotope standards and capture by anti-peptide antibodies (SISCAPA)).

1,249 citations


Journal ArticleDOI
TL;DR: It is suggested that the human genome contains many more miRNAs than currently identified and an experimental approach called miRNA serial analysis of gene expression (miRAGE) is developed and used to perform the largest experimental analysis of human mi RNAs to date.
Abstract: MicroRNAs (miRNAs) are a class of small noncoding RNAs that have important regulatory roles in multicellular organisms. The public miRNA database contains 321 human miRNA sequences, 234 of which have been experimentally verified. To explore the possibility that additional miRNAs are present in the human genome, we have developed an experimental approach called miRNA serial analysis of gene expression (miRAGE) and used it to perform the largest experimental analysis of human miRNAs to date. Sequence analysis of 273,966 small RNA tags from human colorectal cells allowed us to identify 200 known mature miRNAs, 133 novel miRNA candidates, and 112 previously uncharacterized miRNA* forms. To aid in the evaluation of candidate miRNAs, we disrupted the Dicer locus in three human colorectal cancer cell lines and examined known and novel miRNAs in these cells. These studies suggest that the human genome contains many more miRNAs than currently identified and provide an approach for the large-scale experimental cloning of novel human miRNAs in human tissues.

991 citations


Journal ArticleDOI
Ji Yu1, Jie Xiao1, Xiaojia Ren1, Kaiqin Lao2, X. Sunney Xie1 
17 Mar 2006-Science
TL;DR: It is found that the protein molecules are produced in bursts, with each burst originating from a stochastically transcribed single messenger RNA molecule, and that protein copy numbers in the bursts follow a geometric distribution.
Abstract: We directly observed real-time production of single protein molecules in individual Escherichia coli cells. A fusion protein of a fast-maturing yellow fluorescent protein (YFP) and a membrane-targeting peptide was expressed under a repressed condition. The membrane-localized YFP can be detected with single-molecule sensitivity. We found that the protein molecules are produced in bursts, with each burst originating from a stochastically transcribed single messenger RNA molecule, and that protein copy numbers in the bursts follow a geometric distribution. The quantitative study of low-level gene expression demonstrates the potential of single-molecule experiments in elucidating the workings of fundamental biological processes in living cells.

951 citations


Journal ArticleDOI
TL;DR: Findings demonstrate that optimized high-throughput microRNA expression profiling offers novel biomarker identification from typically small clinical samples such as breast and prostate cancer biopsies.
Abstract: Recent studies indicate that microRNAs (miRNAs) are mechanistically involved in the development of various human malignancies, suggesting that they represent a promising new class of cancer biomarkers. However, previously reported methods for measuring miRNA expression consume large amounts of tissue, prohibiting high-throughput miRNA profiling from typically small clinical samples such as excision or core needle biopsies of breast or prostate cancer. Here we describe a novel combination of linear amplification and labeling of miRNA for highly sensitive expression microarray profiling requiring only picogram quantities of purified microRNA. Comparison of microarray and qRT-PCR measured miRNA levels from two different prostate cancer cell lines showed concordance between the two platforms (Pearson correlation R2 = 0.81); and extension of the amplification, labeling and microarray platform was successfully demonstrated using clinical core and excision biopsy samples from breast and prostate cancer patients. Unsupervised clustering analysis of the prostate biopsy microarrays separated advanced and metastatic prostate cancers from pooled normal prostatic samples and from a non-malignant precursor lesion. Unsupervised clustering of the breast cancer microarrays significantly distinguished ErbB2-positive/ER-negative, ErbB2-positive/ER-positive, and ErbB2-negative/ER-positive breast cancer phenotypes (Fisher exact test, p = 0.03); as well, supervised analysis of these microarray profiles identified distinct miRNA subsets distinguishing ErbB2-positive from ErbB2-negative and ER-positive from ER-negative breast cancers, independent of other clinically important parameters (patient age; tumor size, node status and proliferation index). In sum, these findings demonstrate that optimized high-throughput microRNA expression profiling offers novel biomarker identification from typically small clinical samples such as breast and prostate cancer biopsies.

780 citations


Journal ArticleDOI
TL;DR: It is proved that the Michaelis-Menten equation still holds even for a fluctuating single enzyme, but bears a different microscopic interpretation.
Abstract: Enzymes are biological catalysts vital to life processes and have attracted century-long investigation. The classic Michaelis-Menten mechanism provides a highly satisfactory description of catalytic activities for large ensembles of enzyme molecules. Here we tested the Michaelis-Menten equation at the single-molecule level. We monitored long time traces of enzymatic turnovers for individual b-galactosidase molecules by detecting one fluorescent product at a time. A molecular memory phenomenon arises at high substrate concentrations, characterized by clusters of turnover events separated by periods of low activity. Such memory lasts for decades of timescales ranging from milliseconds to seconds owing to the presence of interconverting conformers with broadly distributed lifetimes. We proved that the Michaelis-Menten equation still holds even for a fluctuating single enzyme, but bears a different microscopic interpretation.

735 citations


Journal ArticleDOI
TL;DR: It is concluded that the MAQC microarray data set has been validated by alternative quantitative gene expression platforms thus supporting the use of microarray platforms for the quantitative characterization of gene expression.
Abstract: We have evaluated the performance characteristics of three quantitative gene expression technologies and correlated their expression measurements to those of five commercial microarray platforms, based on the MicroArray Quality Control (MAQC) data set. The limit of detection, assay range, precision, accuracy and fold-change correlations were assessed for 997 TaqMan Gene Expression Assays, 205 Standardized RT (Sta)RT-PCR assays and 244 QuantiGene assays. TaqMan is a registered trademark of Roche Molecular Systems, Inc. We observed high correlation between quantitative gene expression values and microarray platform results and found few discordant measurements among all platforms. The main cause of variability was differences in probe sequence and thus target location. A second source of variability was the limited and variable sensitivity of the different microarray platforms for detecting weakly expressed genes, which affected interplatform and intersite reproducibility of differentially expressed genes. From this analysis, we conclude that the MAQC microarray data set has been validated by alternative quantitative gene expression platforms thus supporting the use of microarray platforms for the quantitative characterization of gene expression.

636 citations


Journal ArticleDOI
TL;DR: The iTRAQ reagents are a set of isobaric reagents which are amine specific and allow for the identification and quantitation of up to four different samples simultaneously and allows for information replication within certain LC-MS/MS experimental regimes, providing additional statistical validation within any given experiment.
Abstract: Proteomic research includes the characterization of protein mixtures in order to understand complex biological systems and determine relationships between proteins, their function, and protein-protein interactions. Often the goal of such research is to monitor changes of proteins in perturbed systems, a type of study referred to as differential expression analysis. To perform these studies requires the ability to execute some type of differential comparison of a given protein state in reference to some type of a control. The iTRAQ™ reagents are a set of isobaric reagents which are amine specific and allow for the identification and quantitation of up to four different samples simultaneously. The amine specificity of these reagents makes most peptides in a sample amenable to this labeling strategy with no loss of information from samples involving post-translational modifications, such as the scrutiny of signal transduction pathways that often involve phosphorylation phenomena. In addition, the multiplexing capacity of these reagents allows for information replication within certain LC-MS/ MS experimental regimes, providing additional statistical validation within any given experiment. The results presented herein demonstrate a few examples of the wide variety of quantitative information that can be realized when undertaking such experimental approaches. These include temporal analysis of drug-induced-protein expression, discovery and elucidation of disease markers, and protein-protein interactions in multi-protein complexes.

489 citations


Journal ArticleDOI
TL;DR: The real-world toxicogenomic data set reported here showed high concordance in intersite and cross-platform comparisons and gene lists generated by fold-change ranking were more reproducible than those obtained by t-test P value or Significance Analysis of Microarrays.
Abstract: To validate and extend the findings of the MicroArray Quality Control (MAQC) project, a biologically relevant toxicogenomics data set was generated using 36 RNA samples from rats treated with three chemicals (aristolochic acid, riddelliine and comfrey) and each sample was hybridized to four microarray platforms The MAQC project assessed concordance in intersite and cross-platform comparisons and the impact of gene selection methods on the reproducibility of profiling data in terms of differentially expressed genes using distinct reference RNA samples The real-world toxicogenomic data set reported here showed high concordance in intersite and cross-platform comparisons Further, gene lists generated by fold-change ranking were more reproducible than those obtained by t-test P value or Significance Analysis of Microarrays Finally, gene lists generated by fold-change ranking with a nonstringent P-value cutoff showed increased consistency in Gene Ontology terms and pathways, and hence the biological impact of chemical exposure could be reliably deduced from all platforms analyzed

399 citations


Journal ArticleDOI
TL;DR: The results provide further evidence that these breast tumor subtypes represent biologically distinct disease entities and may require different therapeutic strategies, and validate by multiple gene expression platforms, the set of 54 predictor genes identified in this study.
Abstract: Gene expression profiling has been used to define molecular phenotypes of complex diseases such as breast cancer. The luminal A and basal-like subtypes have been repeatedly identified and validated as the two main subtypes out of a total of five molecular subtypes of breast cancer. These two are associated with distinctly different gene expression patterns and more importantly, a significant difference in clinical outcome. To further validate and more thoroughly characterize these two subtypes at the molecular level in tumors at an early stage, we report a gene expression profiling study using three different DNA microarray platforms. Expression data from 20 tumor biopsies of early stage breast carcinomas were generated on three different DNA microarray platforms; Applied Biosystems Human Genome Survey Microarrays, Stanford cDNA Microarrays and Agilent's Whole Human Genome Oligo Microarrays, and the resulting gene expression patterns were analyzed. Both unsupervised and supervised analyses identified the different clinically relevant subtypes of breast tumours, and the results were consistent across all three platforms. Gene classification and biological pathway analyses of the genes differentially expressed between the two main subtypes revealed different molecular mechanisms descriptive of the two expression-based subtypes: Signature genes of the luminal A subtype were over-represented by genes involved in fatty acid metabolism and steroid hormone-mediated signaling pathways, in particular estrogen receptor signaling, while signature genes of the basal-like subtype were over-represented by genes involved in cell proliferation and differentiation, p21-mediated pathway, and G1-S checkpoint of cell cycle-signaling pathways. A minimal set of 54 genes that best discriminated the two subtypes was identified using the combined data sets generated from the three different array platforms. These predictor genes were further verified by TaqMan® Gene Expression assays. We have identified and validated the two main previously defined clinically relevant subtypes, luminal A and basal-like, in a small set of early stage breast carcinomas. Signature genes characterizing these two subtypes revealed that distinct molecular mechanisms might have been pre-programmed at an early stage in different subtypes of the disease. Our results provide further evidence that these breast tumor subtypes represent biologically distinct disease entities and may require different therapeutic strategies. Finally, validated by multiple gene expression platforms, including quantitative PCR, the set of 54 predictor genes identified in this study may define potential prognostic molecular markers for breast cancer.

398 citations


Journal ArticleDOI
TL;DR: The preliminary findings of iTRAQ suggest that a roster of proteins may be generated and developed into specific biomarkers that could eventually assist in clinical diagnosis and monitoring disease progression of AD, PD and DLB.
Abstract: Biomarkers are needed to assist in the diagnosis and medical management of various neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia with Lewy body (DLB). We have employed a multiplex quantitative proteomics method, iTRAQ (isobaric Tagging for Relative and Absolute protein Quantification), in conjunction with multidimensional chromatography, followed by tandem mass spectrometry (MS/MS), to simultaneously measure relative changes in the proteome of cerebrospinal fluid (CSF) obtained from patients with AD, PD, and DLB compared to healthy controls. The diagnosis of AD and DLB was confirmed by autopsy, whereas the diagnosis of PD was based on clinical criteria. The proteomic findings showed quantitative changes in AD, PD, and DLB as compared to controls; among more than 1,500 identified CSF proteins, 136, 72, and 101 of the proteins displayed quantitative changes unique to AD, PD, and DLB, respectively. Eight unique proteins were confirmed by Western blot analysis, and the sensitivity at 95% specificity was calculated for each marker alone and in combination. Several panels of unique makers were capable of distinguishing AD, PD and DLB patients from each other as well as from controls with high sensitivity at 95% specificity. Although these preliminary findings must be validated in a larger and different population of patients, they suggest that a roster of proteins may be generated and developed into specific biomarkers that could eventually assist in clinical diagnosis and monitoring disease progression of AD, PD and DLB.

Journal ArticleDOI
TL;DR: This study provides one of the largest "reference" data set of gene expression measurements using TaqMan® Gene Expression Assay based real-time PCR technology and characterizes the limitations of microarrays.
Abstract: DNA microarrays are rapidly becoming a fundamental tool in discovery-based genomic and biomedical research. However, the reliability of the microarray results is being challenged due to the existence of different technologies and non-standard methods of data analysis and interpretation. In the absence of a "gold standard"/"reference method" for the gene expression measurements, studies evaluating and comparing the performance of various microarray platforms have often yielded subjective and conflicting conclusions. To address this issue we have conducted a large scale TaqMan® Gene Expression Assay based real-time PCR experiment and used this data set as the reference to evaluate the performance of two representative commercial microarray platforms. In this study, we analyzed the gene expression profiles of three human tissues: brain, lung, liver and one universal human reference sample (UHR) using two representative commercial long-oligonucleotide microarray platforms: (1) Applied Biosystems Human Genome Survey Microarrays (based on single-color detection); (2) Agilent Whole Human Genome Oligo Microarrays (based on two-color detection). 1,375 genes represented by both microarray platforms and spanning a wide dynamic range in gene expression levels, were selected for TaqMan® Gene Expression Assay based real-time PCR validation. For each platform, four technical replicates were performed on the same total RNA samples according to each manufacturer's standard protocols. For Agilent arrays, comparative hybridization was performed using incorporation of Cy5 for brain/lung/liver RNA and Cy3 for UHR RNA (common reference). Using the TaqMan® Gene Expression Assay based real-time PCR data set as the reference set, the performance of the two microarray platforms was evaluated focusing on the following criteria: (1) Sensitivity and accuracy in detection of expression; (2) Fold change correlation with real-time PCR data in pair-wise tissues as well as in gene expression profiles determined across all tissues; (3) Sensitivity and accuracy in detection of differential expression. Our study provides one of the largest "reference" data set of gene expression measurements using TaqMan® Gene Expression Assay based real-time PCR technology. This data set allowed us to use an alternative gene expression technology to evaluate the performance of different microarray platforms. We conclude that microarrays are indeed invaluable discovery tools with acceptable reliability for genome-wide gene expression screening, though validation of putative changes in gene expression remains advisable. Our study also characterizes the limitations of microarrays; understanding these limitations will enable researchers to more effectively evaluate microarray results in a more cautious and appropriate manner.

Journal ArticleDOI
TL;DR: It is proposed that C57BL/6J mice have the phenotypic characteristics suitable for a model to investigate epigenetic mechanisms within adipose tissue that underlie diet-induced obesity.
Abstract: High phenotypic variation in diet-induced obesity in male C57BL/6J inbred mice suggests a molecular model to investigate non-genetic mechanisms of obesity. Feeding mice a high-fat diet beginning at 8 wk of age resulted in a 4-fold difference in adiposity. The phenotypes of mice characteristic of high or low gainers were evident by 6 wk of age, when mice were still on a low-fat diet; they were amplified after being switched to the high-fat diet and persisted even after the obesogenic protocol was interrupted with a calorically restricted, low-fat chow diet. Accordingly, susceptibility to diet-induced obesity in genetically identical mice is a stable phenotype that can be detected in mice shortly after weaning. Chronologically, differences in adiposity preceded those of feeding efficiency and food intake, suggesting that observed difference in leptin secretion is a factor in determining phenotypes related to food intake. Gene expression analyses of adipose tissue and hypothalamus from mice with low and high weight gain, by microarray and qRT-PCR, showed major changes in the expression of genes of Wnt signaling and tissue re-modeling in adipose tissue. In particular, elevated expression of SFRP5, an inhibitor of Wnt signaling, the imprinted gene MEST and BMP3 may be causally linked to fat mass expansion, since differences in gene expression observed in biopsies of epididymal fat at 7 wk of age (before the high-fat diet) correlated with adiposity after 8 wk on a high-fat diet. We propose that C57BL/6J mice have the phenotypic characteristics suitable for a model to investigate epigenetic mechanisms within adipose tissue that underlie diet-induced obesity.

Patent
07 Apr 2006
TL;DR: In this paper, the authors present a method and device for simultaneously testing a sample for the presence, absence, and/or amounts of one or more of a plurality of selected analytes.
Abstract: The invention is directed to a method and device for simultaneously testing a sample for the presence, absence, and/or amounts of one or more of a plurality of selected analytes. The invention includes, in one aspect, a device for detecting or quantitating a plurality of different analytes in a liquid sample. Each chamber may include an analyte-specific reagent effective to react with a selected analyte that may be present in the sample, and detection means for detecting the signal. Also disclosed are methods utilizing the device.

Journal ArticleDOI
TL;DR: The results showed that full profiles are attainable with low levels of male DNA (below 125 pg) and that under optimized conditions, no detectable cross‐reactive products were obtained on human female DNA, bacteria, and commonly encountered animal species.
Abstract: In the past 5 years, there has been a substantial increase in the use of Y-short tandem repeat loci (Y-STRs) in forensic laboratories, especially in cases where typing autosomal STRs has met with limited success. The AmpF'STR s Yfiler TM PCR amplification kit simultaneously amplifies 17 Y-STR loci including the loci in the ''European minimal haplotype'' (DYS19, DYS385a/b, DYS389I, DYS389II, DYS390, DYS391, DYS392, and DYS393), the Scientific Working Group on DNA Analysis Methods (SWGDAM) recommended Y-STR loci (DYS438 and DYS439), and the highly polymorphic loci DYS437, DYS448, DYS456, DYS458, Y GATA H4, and DYS635 (formerly known as Y GATA C4). The Yfiler TM kit was validated according to the FBI/National Standards and SWGDAM guidelines. Our results showed that full profiles are attainable with low levels of male DNA (below 125pg) and that under optimized conditions, no detectable cross-reactive products were obtained on human female DNA, bacteria, and commonly encountered animal species. Additionally, we demonstrated the ability to detect male specific profiles in admixed male and female blood samples at a ratio of 1:1000.

Journal ArticleDOI
15 Sep 2006-Science
TL;DR: Attachment of the signal to yeast ubiquitin was sufficient for secretion from M. tuberculosis cells, demonstrating that this ESX-1 signal is portable.
Abstract: Mycobacterium tuberculosis uses the ESX-1/Snm system [early secreted antigen 6 kilodaltons (ESAT-6) system 1/secretion in mycobacteria] to deliver virulence factors into host macrophages during infection. Despite its essential role in virulence, the mechanism of ESX-1 secretion is unclear. We found that the unstructured C terminus of the CFP-10 substrate was recognized by Rv3871, a cytosolic component of the ESX-1 system that itself interacts with the membrane protein Rv3870. Point mutations in the signal that abolished binding of CFP-10 to Rv3871 prevented secretion of the CFP-10 (culture filtrate protein, 10 kilodaltons)/ESAT-6 virulence factor complex. Attachment of the signal to yeast ubiquitin was sufficient for secretion from M. tuberculosis cells, demonstrating that this ESX-1 signal is portable.

Journal ArticleDOI
TL;DR: RNA titration samples may be regarded as a valuable tool, not only for assessing microarray platform performance and different analysis methods, but also for determining some underlying biological features of the samples.
Abstract: We have assessed the utility of RNA titration samples for evaluating microarray platform performance and the impact of different normalization methods on the results obtained. As part of the MicroArray Quality Control project, we investigated the performance of five commercial microarray platforms using two independent RNA samples and two titration mixtures of these samples. Focusing on 12,091 genes common across all platforms, we determined the ability of each platform to detect the correct titration response across the samples. Global deviations from the response predicted by the titration ratios were observed. These differences could be explained by variations in relative amounts of messenger RNA as a fraction of total RNA between the two independent samples. Overall, both the qualitative and quantitative correspondence across platforms was high. In summary, titration samples may be regarded as a valuable tool, not only for assessing microarray platform performance and different analysis methods, but also for determining some underlying biological features of the samples.

Patent
01 Feb 2006
TL;DR: In this article, the authors present methods for determining a nucleic acid sequence by performing successive cycles of duplex extension along a single strand template. But the methods are not suitable for use with a damaged base.
Abstract: The present invention provides methods for determining a nucleic acid sequence by performing successive cycles of duplex extension along a single stranded template. The cycles comprise steps of extension, ligation, and, preferably, cleavage. In certain embodiments the methods make use of extension probes containing phosphorothiolate linkages and employ agents appropriate to cleave such linkages. In certain embodiments the methods make use of extension probes containing an abasic residue or a damaged base and employ agents appropriate to cleave linkages between a nucleoside and an abasic residue and/or agents appropriate to remove a damaged base from a nucleic acid. The invention provides methods of determining information about a sequence using at least two distinguishably labeled probe families. In certain embodiments the methods acquire less than 2 bits of information from each of a plurality of nucleotides in the template in each cycle. In certain embodiments the sequencing reactions are performed on templates attached to beads, which are immobilized in or on a semi-solid support. The invention further provides sets of labeled extension probes containing phosphorothiolate linkages or trigger residues that are suitable for use in the method. In addition, the invention includes performing multiple sequencing reactions on a single template by removing initializing oligonucleotides and extended strands and performing subsequent reactions using different initializing oligonucleotides. The invention further provides efficient methods for preparing templates, particularly for performing sequencing multiple different templates in parallel. The invention also provides methods for performing ligation and cleavage. The invention also provides new libraries of nucleic acid fragments containing paired tags, and methods of preparing microparticles having multiple different templates (e.g., containing paired tags) attached thereto and of sequencing the templates individually. The invention also provides automated sequencing systems, flow cells, image processing methods, and computer-readable media that store computer-executable instructions (e.g., to perform the image-processing methods) and/or sequence information. In certain embodiments the sequence information is stored in a database.

Journal ArticleDOI
TL;DR: In this article, a combination of proteomic approaches including 1-DE and 2-DE MALDI-TOF, isotope-coded affinity tag and Western blot analysis were employed to identify proteins associated with human HDL.
Abstract: Plasma lipoproteins, such as high-density lipoprotein (HDL), can serve as carriers for a wide range of proteins that are involved in processes such as lipid metabolism, thrombosis, inflammation and atherosclerosis. The identification of HDL-associated proteins is essential with regards to understanding these processes at the molecular level. In this study, a combination of proteomic approaches including 1-DE and 2-DE MALDI-TOF, isotope-coded affinity tag and Western blot analysis were employed to identify proteins associated with human HDL. To minimize potential losses of HDL-associated proteins during isolation, a one-step ultracentrifugation technique was applied and the quality of purified HDL was confirmed by nephelometry, high-performance gel chromatography, and Western blot analysis. MS analysis revealed the presence of 56 HDL-associated proteins including all known apolipoproteins and lipid transport proteins. Furthermore, proteins involved in hemostasis and thrombosis, the immune and complement system were found. In addition, growth factors, receptors, hormone-associated proteins and many other proteins were found to be associated with HDL. Our approach thus resulted in the identification of a large number of proteins associated with HDL. The combination of proteomic technologies proved to be a powerful and comprehensive tool for the identification of proteins on HDL.

Journal ArticleDOI
TL;DR: The parameters associated with multiplexing RT-PCR are investigated to obtain relative abundance profiles of multiple microRNAs in small sample sizes down to the amount of RNA found in a single cell.

Journal ArticleDOI
TL;DR: A new IC-ESI-MS/MS method, with simple sample preparation procedure, has been developed for quantification and confirmation of perchlorate (ClO4-) anions in water, fresh and canned food, wine and beer samples at low part-per-trillion levels.

Patent
01 Feb 2006
TL;DR: In this article, the authors present methods for determining a nucleic acid sequence by performing successive cycles of duplex extension along a single strand template. But the methods are not suitable for use with a damaged base.
Abstract: The present invention provides methods for determining a nucleic acid sequence by performing successive cycles of duplex extension along a single stranded template. The cycles comprise steps of extension, ligation, and, preferably, cleavage. In certain embodiments the methods make use of extension probes containing phosphorothiolate linkages and employ agents appropriate to cleave such linkages. In certain embodiments the methods make use of extension probes containing an abasic residue or a damaged base and employ agents appropriate to cleave linkages between a nucleoside and an abasic residue and/or agents appropriate to remove a damaged base from a nucleic acid. The invention provides methods of determining information about a sequence using at least two distinguishably labeled probe families. In certain embodiments the methods acquire less than 2 bits of information from each of a plurality of nucleotides in the template in each cycle. In certain embodiments the sequencing reactions are performed on templates attached to beads, which are immobilized in or on a semi-solid support. The invention further provides sets of labeled extension probes containing phosphorothiolate linkages or trigger residues that are suitable for use in the method. In addition, the invention includes performing multiple sequencing reactions on a single template by removing initializing oligonucleotides and extended strands and performing subsequent reactions using different initializing oligonucleotides. The invention further provides efficient methods for preparing templates, particularly for performing sequencing multiple different templates in parallel. The invention also provides methods for performing ligation and cleavage. The invention also provides new libraries of nucleic acid fragments containing paired tags, and methods of preparing microparticles having multiple different templates (e.g., containing paired tags) attached thereto and of sequencing the templates individually. The invention also provides automated sequencing systems, flow cells, image processing methods, and computer-readable media that store computer-executable instructions (e.g., to perform the image-processing methods) and/or sequence information. In certain embodiments the sequence information is stored in a database.

Journal ArticleDOI
TL;DR: A unique combination of new operating modes provided by hybrid triple-quadrupole linear ion trap mass spectrometers and new software features allowed development of a comprehensive and efficient method for the general unknown screening of drugs and toxic compounds in blood or urine.
Abstract: Background: In clinical and forensic toxicology, general unknown screening is used to detect and identify exogenous compounds. In this study, we aimed to develop a comprehensive general unknown screening method based on liquid chromatography coupled with a hybrid triple-quadrupole linear ion trap mass spectrometer. Methods: After solid-phase extraction, separation was performed using gradient reversed-phase chromatography. The mass spectrometer was operated in the information-dependent acquisition mode, switching between a survey scan acquired in the Enhanced Mass Spectrometry mode with dynamic subtraction of background noise and a dependent scan obtained in the enhanced product ion scan mode. The complete cycle time was 1.36 s. A library of 1000 enhanced product ion–tandem mass spectrometry spectra in positive mode and 250 in negative mode, generated using 3 alternated collision tensions during each scan, was created by injecting pure solutions of drugs and toxic compounds. Results: Comparison with HPLC-diode array detection and gas chromatography-mass spectrometry for the analysis of 36 clinical samples showed that linear ion trap tandem mass spectrometry could identify most of the compounds (94% of the total). Some compounds were detected only by 1 of the other 2 techniques. Specific clinical cases highlighted the advantages and limitations of the method. Conclusion: A unique combination of new operating modes provided by hybrid triple-quadrupole linear ion trap mass spectrometers and new software features allowed development of a comprehensive and efficient method for the general unknown screening of drugs and toxic compounds in blood or urine.

Journal ArticleDOI
TL;DR: This study provides not only a global picture of transcription and expression adaptations during a complex antibiotic resistance mechanism but also unravels potential drug targets or markers that are constitutively expressed by resistant strains regardless of their genetic background, amenable to be used as diagnostic targets.
Abstract: To unravel molecular targets involved in glycopeptide resistance, three isogenic strains of Staphylococcus aureus with different susceptibility levels to vancomycin or teicoplanin were subjected to whole-genome microarray-based transcription and quantitative proteomic profiling Quantitative proteomics performed on membrane extracts showed exquisite inter-experimental reproducibility permitting the identification and relative quantification of >30% of the predicted S aureus proteome In the absence of antibiotic selection pressure, comparison of stable resistant and susceptible strains revealed 94 differentially expressed genes and 178 proteins As expected, only partial correlation was obtained between transcriptomic and proteomic results during stationary-phase Application of massively parallel methods identified one third of the complete proteome, a majority of which was only predicted based on genome sequencing, but never identified to date Several over-expressed genes represent previously reported targets, while series of genes and proteins possibly involved in the glycopeptide resistance mechanism were discovered here, including regulators, global regulator attenuator, hyper-mutability factor or hypothetical proteins Gene expression of these markers was confirmed in a collection of genetically unrelated strains showing altered susceptibility to glycopeptides Our proteome and transcriptome analyses have been performed during stationary-phase of growth on isogenic strains showing susceptibility or intermediate level of resistance against glycopeptides Altered susceptibility had emerged spontaneously after infection with a sensitive parental strain, thus not selected in vitro This combined analysis allows the identification of hundreds of proteins considered, so far as hypothetical protein In addition, this study provides not only a global picture of transcription and expression adaptations during a complex antibiotic resistance mechanism but also unravels potential drug targets or markers that are constitutively expressed by resistant strains regardless of their genetic background, amenable to be used as diagnostic targets

Journal ArticleDOI
TL;DR: The unexpected observation that Hck, Lyn, and Fyn strongly phosphorylate the SH3-SH2 region of Bcr-Abl is reported, which suggests that phosphorylation of the SH2-SH3 region by Src family kinases impacts Bcr -Abl protein conformation and signaling.

Journal ArticleDOI
TL;DR: Coupling of this methodology with a stable isotope N-terminal labeling strategy using iTRAQ™ reagents enabled phosphorylation mapping and relative protein phosphorylated levels to be determined between the active and inactive forms of the protein kinase MAPKAPK-1 in the same LC/MS run.

Journal ArticleDOI
TL;DR: Nell1(6R) mutant mice are a new tool for elucidating basic mechanisms in osteoblast and chrondrocyte differentiation in the developing skull and vertebral column and understanding how perturbations in the production of ECM proteins can lead to anomalies in these structures.
Abstract: The mammalian Nell1 gene encodes a protein kinase C-beta1 (PKC-beta1) binding protein that belongs to a new class of cell-signaling molecules controlling cell growth and differentiation. Over-expression of Nell1 in the developing cranial sutures in both human and mouse induces craniosynostosis, the premature fusion of the growing cranial bone fronts. Here, we report the generation, positional cloning and characterization of Nell1(6R), a recessive, neonatal-lethal point mutation in the mouse Nell1 gene, induced by N-ethyl-N-nitrosourea. Nell1(6R) has a T-->A base change that converts a codon for cysteine into a premature stop codon [Cys(502)Ter], resulting in severe truncation of the predicted protein product and marked reduction in steady-state levels of the transcript. In addition to the expected alteration of cranial morphology, Nell1(6R) mutants manifest skeletal defects in the vertebral column and ribcage, revealing a hitherto undefined role for Nell1 in signal transduction in endochondral ossification. Real-time quantitative reverse transcription-PCR assays of 219 genes showed an association between the loss of Nell1 function and reduced expression of genes for extracellular matrix (ECM) proteins critical for chondrogenesis and osteogenesis. Several affected genes are involved in the human cartilage disorder Ehlers-Danlos Syndrome and other disorders associated with spinal curvature anomalies. Nell1(6R) mutant mice are a new tool for elucidating basic mechanisms in osteoblast and chrondrocyte differentiation in the developing skull and vertebral column and understanding how perturbations in the production of ECM proteins can lead to anomalies in these structures.

Journal ArticleDOI
TL;DR: Levels of androgen were 1 order of magnitude lower than those of estrogen, andstrone, estrone 3-sulfate, and 4-androstene-3,17-dione were detected in almost all water samples, with maxima of 51, 5.1, and 6.4 ng L(-1), respectively.
Abstract: A highly sensitive and uncomplicated method of analyzing steroidal hormones in river and estuarine water samples was developed using a liquid chromatography tandem mass spectrometer equipped with an electrospray ionization (ESI) source and atmospheric pressure photoionization (APPI) source. Steroidal hormones included not only estrogen but also androgen and conjugates of these two. APPI displayed greater sensitivity than ESI for most of the unconjugated steroids examined, with very high sensitivity for testosterone and 4-androstene-3,17-dione in particular. For conjugated hormones, in contrast, ESI was more effective. The method developed was applied to the determination of hormones in the rivers of Osaka City and their estuaries, where the hormones detected were affected by the effluent from municipal wastewater treatment plants (WWTPs), and hormone concentration values were comparable to those reported in previous studies of such effluent. Because of the two-way flow and stagnancy of streams and waterco...

Journal ArticleDOI
TL;DR: New proteins have been identified that indicated the mobilization of storage proteins and carbohydrates, as well as photosynthesis inhibition under drought conditions, and some of them corresponding to enzymes of carbohydrate and protein metabolism.
Abstract: Major proteins of the holm oak leaf proteome have been previously identified using a combination of 2-DE, MS analysis and BLAST similarity search (Jorge et al., Proteomics 2005, 5, 222-234). That study, conducted with field samples from mature trees, revealed the existence of a great variability in the 2-DE protein map, with qualitative as well as quantitative changes, both analytical and biological. A similar study has been carried out with 2-year-old seedlings to analyze and study: (i) changes in the 2-DE protein profile at different tree developmental stages; (ii) the 2-DE protein map variability between three different Spanish provenances; and (iii) variations in the 2-DE protein profile in response to drought stress. Although the protein profile of leaves from seedlings and mature trees was fairly similar, the biological variance found was lower in the former. In the present study, new proteins have been identified. At least four different protein spots differentiated Spanish provenances, two of them identified as an ATP synthase alpha chain, and a 2,3-bisphosphoglycerate-independent phosphoglycerate mutase. Fourteen different protein spots were qualitatively variable between well-watered and drought-stressed seedlings, with some of them corresponding to enzymes of carbohydrate and protein metabolism. Data presented indicated the mobilization of storage proteins and carbohydrates, as well as photosynthesis inhibition under drought conditions.

Journal ArticleDOI
TL;DR: The behavior of different ERC types was investigated, resulting in several important observations, such as the sample-dependent attributes of performance and the potential of using these control RNAs in a combinatorial fashion.
Abstract: External RNA controls (ERCs), although important for microarray assay performance assessment, have yet to be fully implemented in the research community. As part of the MicroArray Quality Control (MAQC) study, two types of ERCs were implemented and evaluated; one was added to the total RNA in the samples before amplification and labeling; the other was added to the copyRNAs (cRNAs) before hybridization. ERC concentration-response curves were used across multiple commercial microarray platforms to identify problematic assays and potential sources of variation in the analytical process. In addition, the behavior of different ERC types was investigated, resulting in several important observations, such as the sample-dependent attributes of performance and the potential of using these control RNAs in a combinatorial fashion. This multiplatform investigation of the behavior and utility of ERCs provides a basis for articulating specific recommendations for their future use in evaluating assay performance across multiple platforms.