scispace - formally typeset
Search or ask a question

Showing papers by "Argonne National Laboratory published in 2014"


Journal ArticleDOI
Keith A. Olive1, Kaustubh Agashe2, Claude Amsler3, Mario Antonelli  +222 moreInstitutions (107)
TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.

7,337 citations


Journal ArticleDOI
21 Mar 2014-Science
TL;DR: A highly active and durable class of electrocatalysts is synthesized by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals by exploitingThe starting material, crystalline PtNi3 polyhedra, transforms in solution by interior erosion into Pt3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility.
Abstract: Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi3 polyhedra, transforms in solution by interior erosion into Pt3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi3 polyhedra are maintained in the final Pt3Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skin structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt3Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.

2,252 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented cosmological constraints from a joint analysis of type Ia supernova (SN Ia) observations obtained by the SDSS-II and SNLS collaborations.
Abstract: Aims. We present cosmological constraints from a joint analysis of type Ia supernova (SN Ia) observations obtained by the SDSS-II and SNLS collaborations. The dataset includes several low-redshift samples (z< 0.1), all three seasons from the SDSS-II (0.05

1,939 citations


Journal ArticleDOI
TL;DR: In this article, the most recent advance in the applications of 0D (nanoparticles), 1D(nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in lithium-ion batteries are summarized.
Abstract: There are growing concerns over the environmental, climate, and health impacts caused by using non-renewable fossil fuels. The utilization of green energy, including solar and wind power, is believed to be one of the most promising alternatives to support more sustainable economic growth. In this regard, lithium-ion batteries (LIBs) can play a critically important role. To further increase the energy and power densities of LIBs, silicon anodes have been intensively explored due to their high capacity, low operation potential, environmental friendliness, and high abundance. The main challenges for the practical implementation of silicon anodes, however, are the huge volume variation during lithiation and delithiation processes and the unstable solid-electrolyte interphase (SEI) films. Recently, significant breakthroughs have been achieved utilizing advanced nanotechnologies in terms of increasing cycle life and enhancing charging rate performance due partially to the excellent mechanical properties of nanomaterials, high surface area, and fast lithium and electron transportation. Here, the most recent advance in the applications of 0D (nanoparticles), 1D (nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in LIBs are summarized. The synthetic routes and electrochemical performance of these Si nanomaterials, and the underlying reaction mechanisms are systematically described.

1,365 citations


Journal ArticleDOI
TL;DR: This data set provides quantum chemical properties for a relevant, consistent, and comprehensive chemical space of small organic molecules that may serve the benchmarking of existing methods, development of new methods, such as hybrid quantum mechanics/machine learning, and systematic identification of structure-property relationships.
Abstract: Computational de novo design of new drugs and materials requires rigorous and unbiased exploration of chemical compound space. However, large uncharted territories persist due to its size scaling combinatorially with molecular size. We report computed geometric, energetic, electronic, and thermodynamic properties for 134k stable small organic molecules made up of CHONF. These molecules correspond to the subset of all 133,885 species with up to nine heavy atoms (CONF) out of the GDB-17 chemical universe of 166 billion organic molecules. We report geometries minimal in energy, corresponding harmonic frequencies, dipole moments, polarizabilities, along with energies, enthalpies, and free energies of atomization. All properties were calculated at the B3LYP/6-31G(2df,p) level of quantum chemistry. Furthermore, for the predominant stoichiometry, C7H10O2, there are 6,095 constitutional isomers among the 134k molecules. We report energies, enthalpies, and free energies of atomization at the more accurate G4MP2 level of theory for all of them. As such, this data set provides quantum chemical properties for a relevant, consistent, and comprehensive chemical space of small organic molecules. This database may serve the benchmarking of existing methods, development of new methods, such as hybrid quantum mechanics/machine learning, and systematic identification of structure-property relationships.

1,272 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented revised estimates of permafrost organic carbon stocks, including quantitative uncertainty estimates, in the 0-3 m depth range in soils as well as for sediments deeper than 3 m in deltaic deposits of major rivers and in the Yedoma region of Siberia and Alaska.
Abstract: Soils and other unconsolidated deposits in the northern circumpolar permafrost region store large amounts of soil organic carbon (SOC). This SOC is potentially vulnerable to remobilization following soil warming and permafrost thaw, but SOC stock estimates were poorly constrained and quantitative error estimates were lacking. This study presents revised estimates of permafrost SOC stocks, including quantitative uncertainty estimates, in the 0–3 m depth range in soils as well as for sediments deeper than 3 m in deltaic deposits of major rivers and in the Yedoma region of Siberia and Alaska. Revised estimates are based on significantly larger databases compared to previous studies. Despite this there is evidence of significant remaining regional data gaps. Estimates remain particularly poorly constrained for soils in the High Arctic region and physiographic regions with thin sedimentary overburden (mountains, highlands and plateaus) as well as for deposits below 3 m depth in deltas and the Yedoma region. While some components of the revised SOC stocks are similar in magnitude to those previously reported for this region, there are substantial differences in other components, including the fraction of perennially frozen SOC. Upscaled based on regional soil maps, estimated permafrost region SOC stocks are 217 ± 12 and 472 ± 27 Pg for the 0–0.3 and 0–1 m soil depths, respectively (±95% confidence intervals). Storage of SOC in 0–3 m of soils is estimated to 1035 ± 150 Pg. Of this, 34 ± 16 Pg C is stored in poorly developed soils of the High Arctic. Based on generalized calculations, storage of SOC below 3 m of surface soils in deltaic alluvium of major Arctic rivers is estimated as 91 ± 52 Pg. In the Yedoma region, estimated SOC stocks below 3 m depth are 181 ± 54 Pg, of which 74 ± 20 Pg is stored in intact Yedoma (late Pleistocene ice- and organic-rich silty sediments) with the remainder in refrozen thermokarst deposits. Total estimated SOC storage for the permafrost region is ∼1300 Pg with an uncertainty range of ∼1100 to 1500 Pg. Of this, ∼500 Pg is in non-permafrost soils, seasonally thawed in the active layer or in deeper taliks, while ∼800 Pg is perennially frozen. This represents a substantial ∼300 Pg lowering of the estimated perennially frozen SOC stock compared to previous estimates.

1,168 citations


Journal ArticleDOI
TL;DR: A review of recent tribological studies based on graphene from the nano-scale to macro-scale, in particular, its use as a self-lubricating solid or as an additive for lubricating oils is provided in this paper.

1,064 citations


Journal ArticleDOI
TL;DR: Li−O2 Batteries Jun Lu,† Li Li,‡ Jin-Bum Park, Yang-Kook Sun,* Feng Wu,*,‡ and Khalil Amine*,†,∥Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439.
Abstract: Li−O2 Batteries Jun Lu,† Li Li,‡ Jin-Bum Park, Yang-Kook Sun,* Feng Wu,*,‡ and Khalil Amine*,†,∥ †Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States ‡Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081, China Department of Energy Engineering, Hanyang University, Seoul 133-791, South Korea Chemistry Department, Faculty of Science, King Abdulaziz University, 80203 Jeddah, Saudi Arabia

941 citations


Journal ArticleDOI
TL;DR: This work compares ensembles of water supply and demand projections driven by ensemble output from five global climate models and suggests surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.
Abstract: We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.

827 citations


Journal ArticleDOI
01 May 2014-Mbio
TL;DR: A complete database of genes from major known butyrate-producing pathways is provided, using in-depth genomic analysis of publicly available genomes, filling an important gap to accurately assess the butyrATE-producing potential of complex microbial communities from “-omics”-derived data.
Abstract: Butyrate-producing bacteria have recently gained attention, since they are important for a healthy colon and when altered contribute to emerging diseases, such as ulcerative colitis and type II diabetes. This guild is polyphyletic and cannot be accurately detected by 16S rRNA gene sequencing. Consequently, approaches targeting the terminal genes of the main butyrate- producing pathway have been developed. However, since additional pathways exist and alternative, newly recognized enzymes catalyzing the terminal reaction have been described, previous investigations are often incomplete. We undertook a broad analy- sis of butyrate-producing pathways and individual genes by screening 3,184 sequenced bacterial genomes from the Integrated Microbial Genome database. Genomes of 225 bacteria with a potential to produce butyrate were identified, including many pre- viously unknown candidates. The majority of candidates belong to distinct families within the Firmicutes, but members of nine other phyla, especially from Actinobacteria,Bacteroidetes,Fusobacteria,Proteobacteria,Spirochaetes, andThermotogae, were also identified as potential butyrate producers. The established gene catalogue (3,055 entries) was used to screen for butyrate synthesis pathways in 15 metagenomes derived from stool samples of healthy individuals provided by the HMP (Human Micro- biome Project) consortium. A high percentage of total genomes exhibited a butyrate-producing pathway (mean, 19.1%; range, 3.2% to 39.4%), where the acetyl-coenzyme A (CoA) pathway was the most prevalent (mean, 79.7% of all pathways), followed by the lysine pathway (mean, 11.2%). Diversity analysis for the acetyl-CoA pathway showed that the same fewfirmicute groups as- sociated with several Lachnospiraceae andRuminococcaceae were dominating in most individuals, whereas the other pathways were associated primarily with Bacteroidetes. IMPORTANCE Microbiome research has revealed new, important roles of our gut microbiota for maintaining health, but an un- derstanding of effects of specific microbial functions on the host is in its infancy, partly because in-depth functional microbial analyses are rare and publicly available databases are often incomplete/misannotated. In this study, we focused on production of butyrate, the main energy source for colonocytes, which plays a critical role in health and disease. We have provided a complete database of genes from major known butyrate-producing pathways, using in-depth genomic analysis of publicly available ge- nomes,filling an important gap to accurately assess the butyrate-producing potential of complex microbial communities from "-omics"-derived data. Furthermore, a reference data set containing the abundance and diversity of butyrate synthesis pathways from the healthy gut microbiota was established through a metagenomics-based assessment. This study will help in understand- ing the role of butyrate producers in health and disease and may assist the development of treatments for functional dysbiosis.

774 citations


Journal ArticleDOI
29 Aug 2014-Science
TL;DR: After a house move, the microbial community in the new house rapidly converged on the microbialcommunity of the occupants’ former house, suggesting rapid colonization by the family’s microbiota.
Abstract: The bacteria that colonize humans and our built environments have the potential to influence our health. Microbial communities associated with seven families and their homes over 6 weeks were assessed, including three families that moved their home. Microbial communities differed substantially among homes, and the home microbiome was largely sourced from humans. The microbiota in each home were identifiable by family. Network analysis identified humans as the primary bacterial vector, and a Bayesian method significantly matched individuals to their dwellings. Draft genomes of potential human pathogens observed on a kitchen counter could be matched to the hands of occupants. After a house move, the microbial community in the new house rapidly converged on the microbial community of the occupants' former house, suggesting rapid colonization by the family's microbiota.

Journal ArticleDOI
TL;DR: The Earth Microbiome Project (EMP) was launched in August 2010, with the ambitious aim of constructing a global catalogue of the uncultured microbial diversity of this planet.
Abstract: The Earth Microbiome Project (EMP) was launched in August 2010, with the ambitious aim of constructing a global catalogue of the uncultured microbial diversity of this planet. The primary vision of the Earth Microbiome Project, to process the microbial diversity and functional potential from approximately 200,000 environmental samples, marks it as an undertaking so massive that it was at first considered to be pure folly (as late as 2012, Jonathan Eisen was quoted in Nature as saying ‘Knight

Journal ArticleDOI
TL;DR: A collaborative framework for the analysis of synchrotron tomographic data which has the potential to unify the effort of different facilities and beamlines performing similar tasks is described.
Abstract: Analysis of tomographic datasets at synchrotron light sources (including X-ray transmission tomography, X-ray fluorescence microscopy and X-ray diffraction tomography) is becoming progressively more challenging due to the increasing data acquisition rates that new technologies in X-ray sources and detectors enable. The next generation of synchrotron facilities that are currently under design or construction throughout the world will provide diffraction-limited X-ray sources and are expected to boost the current data rates by several orders of magnitude, stressing the need for the development and integration of efficient analysis tools. Here an attempt to provide a collaborative framework for the analysis of synchrotron tomographic data that has the potential to unify the effort of different facilities and beamlines performing similar tasks is described in detail. The proposed Python-based framework is open-source, platform- and data-format-independent, has multiprocessing capability and supports procedural programming that many researchers prefer. This collaborative platform could affect all major synchrotron facilities where new effort is now dedicated to developing new tools that can be deployed at the facility for real-time processing, as well as distributed to users for off-site data processing.

Journal ArticleDOI
TL;DR: It is experimentally demonstrate that the transport gap of phosphorene can be tuned monotonically from ∼0.3 to ∼1.0 eV when the flake thickness is scaled down from bulk to a single layer, and the asymmetry of the electron and the hole current was found to be dependent on the layer thickness.
Abstract: In this article, we experimentally demonstrate that the transport gap of phosphorene can be tuned monotonically from ∼0.3 to ∼1.0 eV when the flake thickness is scaled down from bulk to a single layer. As a consequence, the ON current, the OFF current, and the current ON/OFF ratios of phosphorene field effect transistors (FETs) were found to be significantly impacted by the layer thickness. The transport gap was determined from the transfer characteristics of phosphorene FETs using a robust technique that has not been reported before. The detailed mathematical model is also provided. By scaling the thickness of the gate oxide, we were also able to demonstrate enhanced ambipolar conduction in monolayer and few layer phosphorene FETs. The asymmetry of the electron and the hole current was found to be dependent on the layer thickness that can be explained by dynamic changes of the metal Fermi level with the energy band of phosphorene depending on the layer number. We also extracted the Schottky barrier heigh...

Journal ArticleDOI
TL;DR: A stochastic problem for microgrid energy scheduling is formed that minimizes the expected operational cost of the microgrid and power losses while accommodating the intermittent nature of renewable energy resources.
Abstract: Renewable energy resources such as wind and solar are an important component of a microgrid. However, the inherent intermittency and variability of such resources complicates microgrid operations. Meanwhile, more controllable loads (e.g., plug-in electric vehicles), distributed generators (e.g., micro gas turbines and diesel generators), and distributed energy storage devices (e.g., battery banks) are being integrated into the microgrid operation. To address the operational challenges associated with these technologies and energy resources, this paper formulates a stochastic problem for microgrid energy scheduling. The proposed problem formulation minimizes the expected operational cost of the microgrid and power losses while accommodating the intermittent nature of renewable energy resources. Case studies are performed on a modified IEEE 37-bus test feeder. The simulation results demonstrate the effectiveness and accuracy of the proposed stochastic microgrid energy scheduling model.

Journal ArticleDOI
TL;DR: It is shown here that sensitization to a food allergen is increased in mice that have been treated with antibiotics or are devoid of a commensal microbiota, and this data support the development of novel adjunctive probiotic therapies to potentiate the induction of tolerance to dietary allergens.
Abstract: Environmentally induced alterations in the commensal microbiota have been implicated in the increasing prevalence of food allergy. We show here that sensitization to a food allergen is increased in mice that have been treated with antibiotics or are devoid of a commensal microbiota. By selectively colonizing gnotobiotic mice, we demonstrate that the allergy-protective capacity is conferred by a Clostridia-containing microbiota. Microarray analysis of intestinal epithelial cells from gnotobiotic mice revealed a previously unidentified mechanism by which Clostridia regulate innate lymphoid cell function and intestinal epithelial permeability to protect against allergen sensitization. Our findings will inform the development of novel approaches to prevent or treat food allergy based on modulating the composition of the intestinal microbiota.

Journal ArticleDOI
17 Jul 2014-Cell
TL;DR: A Primer for researchers from diverse disciplines interested in conducting microbiome research discusses factors to be considered in the design, execution, and data analysis of microbiome studies.

Journal ArticleDOI
TL;DR: In this article, the use of two, rather than one, donor polymers in an organic solar cell was shown to enhance charge separation, transport and recombination, and two-layer solar cells were used.
Abstract: The use of two, rather than one, donor polymers in an organic solar cell is shown to enhance charge separation, transport and recombination.

Journal ArticleDOI
TL;DR: In this article, the authors investigated electrochemical systems capable of economically storing energy for hours and presented an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries.
Abstract: Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries We identified potential advantages of nonaqueous flow batteries over those based on aqueous electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion

Journal ArticleDOI
TL;DR: In this article, the key challenges and opportunities in modeling and optimization of biomass-to-bioenergy supply chains are described, along with a comprehensive overview and classification of the existing contributions on biofuel/bio-energy supply chain optimization.

Journal ArticleDOI
TL;DR: It is found that the most active oxides are, in fact, the least stable materials, and the best materials for the OER should balance stability and activity in such a way that the dissolution rate is neither too fast nor too slow.
Abstract: In the present study, we used a surface-science approach to establish a functional link between activity and stability of monometallic oxides during the OER in acidic media. We found that the most active oxides (Au ≪ Pt Ir > Ru ≫ Os) materials. We suggest that the relationships between stability and activity are controlled by both the nobility of oxides as well as by the density of surface defects. This functionality is governed by the nature of metal cations and the potential transformation of a stable metal cation with a valence state of n = +4 to unstable metal cation with n > +4. A practical consequence of such a close relationship between activity and stability is that the best materials for the OER should balance stability and activity in such a way that the dissolution rate is neither too fast nor too slow.

Journal ArticleDOI
19 Dec 2014-Science
TL;DR: The addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH)x-(Na or K) ensembles and paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel-processing reactions.
Abstract: We report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH)x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (<200°C) water-gas shift (WGS) reaction. Unexpectedly, gold is thus similar to platinum in creating -O linkages with more than eight alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports, apparently all sharing a common, similarly structured gold active site. This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel-processing reactions.

Journal ArticleDOI
29 Aug 2014-Mbio
TL;DR: This work introduces a new method to detect typically rare microbial taxa that occasionally become very abundant (conditionally rare taxa [CRT]) and quantifies their contributions to temporal shifts in community structure and reveals that many rareTaxa contribute a greater amount to microbial community dynamics than is apparent from their low proportional abundances.
Abstract: Microbial communities typically contain many rare taxa that make up the majority of the observed membership, yet the contribution of this microbial "rare biosphere" to community dynamics is unclear. Using 16S rRNA amplicon sequencing of 3,237 samples from 42 time series of microbial communities from nine different ecosystems (air; marine; lake; stream; adult hu- man skin, tongue, and gut; infant gut; and brewery wastewater treatment), we introduce a new method to detect typically rare microbial taxa that occasionally become very abundant (conditionally rare taxa (CRT)) and then quantify their contributions to temporal shifts in community structure. We discovered that CRT made up 1.5 to 28% of the community membership, repre- sented a broad diversity of bacterial and archaeal lineages, and explained large amounts of temporal community dissimilarity (i.e., up to 97% of Bray-Curtis dissimilarity). Most of the CRT were detected at multiple time points, though we also identified "one-hit wonder" CRT that were observed at only one time point. Using a case study from a temperate lake, we gained additional insights into the ecology of CRT by comparing routine community time series to large disturbance events. Our results reveal that many rare taxa contribute a greater amount to microbial community dynamics than is apparent from their low proportional abundances. This observation was true across a wide range of ecosystems, indicating that these rare taxa are essential for under- standing community changes over time. IMPORTANCE Microbial communities and their processes are the foundations of ecosystems. The ecological roles of rare microor- ganisms are largely unknown, but it is thought that they contribute to community stability by acting as a reservoir that can rap- idly respond to environmental changes. We investigated the occurrence of typically rare taxa that very occasionally become more prominent in their communities ("conditionally rare"). We quantified conditionally rare taxa in time series from a wide variety of ecosystems and discovered that not only were conditionally rare taxa present in all of the examples, but they also contributed disproportionately to temporal changes in diversity when they were most abundant. This result indicates an important and gen- eral role for rare microbial taxa within their communities.

Journal ArticleDOI
TL;DR: It is shown that Sn self-compensation can effectively reduce the Sn vacancies and decrease the hole carrier density, and alloying with Cd atoms enables a form of valence band engineering that improves the high-temperature thermoelectric performance.
Abstract: SnTe is a potentially attractive thermoelectric because it is the lead-free rock-salt analogue of PbTe. However, SnTe is a poor thermoelectric material because of its high hole concentration arising from inherent Sn vacancies in the lattice and its very high electrical and thermal conductivity. In this study, we demonstrate that SnTe-based materials can be controlled to become excellent thermoelectrics for power generation via the successful application of several key concepts that obviate the well-known disadvantages of SnTe. First, we show that Sn self-compensation can effectively reduce the Sn vacancies and decrease the hole carrier density. For example, a 3 mol % self-compensation of Sn results in a 50% improvement in the figure of merit ZT. In addition, we reveal that Cd, nominally isoelectronic with Sn, favorably impacts the electronic band structure by (a) diminishing the energy separation between the light-hole and heavy-hole valence bands in the material, leading to an enhanced Seebeck coefficien...

Journal ArticleDOI
21 Aug 2014-PeerJ
TL;DR: A performance-optimized algorithm for assigning marker gene sequences generated on next-generation sequencing platforms to operational taxonomic units (OTUs) for microbial community analysis is presented and it is shown that subsampled open-reference OTU picking yields results that are highly correlated with those generated by “classic” open- reference OTUpicking through comparisons on three well-studied datasets.
Abstract: We present a performance-optimized algorithm, subsampled open-reference OTU picking, for assigning marker gene (e.g., 16S rRNA) sequences generated on next-generation sequencing platforms to operational taxonomic units (OTUs) for microbial community analysis. This algorithm provides benefits over de novo OTU picking (clustering can be performed largely in parallel, reducing runtime) and closed-reference OTU picking (all reads are clustered, not only those that match a reference database sequence with high similarity). Because more of our algorithm can be run in parallel relative to "classic" open-reference OTU picking, it makes open-reference OTU picking tractable on massive amplicon sequence data sets (though on smaller data sets, "classic" open-reference OTU clustering is often faster). We illustrate that here by applying it to the first 15,000 samples sequenced for the Earth Microbiome Project (1.3 billion V4 16S rRNA amplicons). To the best of our knowledge, this is the largest OTU picking run ever performed, and we estimate that our new algorithm runs in less than 1/5 the time than would be required of "classic" open reference OTU picking. We show that subsampled open-reference OTU picking yields results that are highly correlated with those generated by "classic" open-reference OTU picking through comparisons on three well-studied datasets. An implementation of this algorithm is provided in the popular QIIME software package, which uses uclust for read clustering. All analyses were performed using QIIME's uclust wrappers, though we provide details (aided by the open-source code in our GitHub repository) that will allow implementation of subsampled open-reference OTU picking independently of QIIME (e.g., in a compiled programming language, where runtimes should be further reduced). Our analyses should generalize to other implementations of these OTU picking algorithms. Finally, we present a comparison of parameter settings in QIIME's OTU picking workflows and make recommendations on settings for these free parameters to optimize runtime without reducing the quality of the results. These optimized parameters can vastly decrease the runtime of uclust-based OTU picking in QIIME.

Journal ArticleDOI
27 Jun 2014-Science
TL;DR: The results demonstrate the formation of a nonequilibrium solid solution phase, LixFePO4 (0 < x < 1), during high-rate cycling, with compositions that span the entire composition between two thermodynamic phases, LiFe PO4 and FePO4.
Abstract: The absence of a phase transformation involving substantial structural rearrangements and large volume changes is generally considered to be a key characteristic underpinning the high-rate capability of any battery electrode material. In apparent contradiction, nanoparticulate LiFePO4, a commercially important cathode material, displays exceptionally high rates, whereas its lithium-composition phase diagram indicates that it should react via a kinetically limited, two-phase nucleation and growth process. Knowledge concerning the equilibrium phases is therefore insufficient, and direct investigation of the dynamic process is required. Using time-resolved in situ x-ray powder diffraction, we reveal the existence of a continuous metastable solid solution phase during rapid lithium extraction and insertion. This nonequilibrium facile phase transformation route provides a mechanism for realizing high-rate capability of electrode materials that operate via two-phase reactions.

Journal ArticleDOI
TL;DR: It is shown that isolated palladium atoms can be catalytically active on industrially relevant γ-alumina supports, and the addition of lanthanum oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated Palladium atoms.
Abstract: Catalysis by single isolated atoms of precious metals has attracted much recent interest, as it promises the ultimate in atom efficiency. Most previous reports are on reducible oxide supports. Here we show that isolated palladium atoms can be catalytically active on industrially relevant γ-alumina supports. The addition of lanthanum oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated palladium atoms. Aberration-corrected scanning transmission electron microscopy and operando X-ray absorption spectroscopy confirm the presence of intermingled palladium and lanthanum on the γ-alumina surface. Carbon monoxide oxidation reactivity measurements show onset of catalytic activity at 40 °C. The catalyst activity can be regenerated by oxidation at 700 °C in air. The high-temperature stability and regenerability of these ionic palladium species make this catalyst system of potential interest for low-temperature exhaust treatment catalysts.

Journal ArticleDOI
TL;DR: A new class of upconversion nanocrystals adopting an orthorhombic crystallographic structure in which the lanthanide ions are distributed in arrays of tetrad clusters is described, which enables the preservation of excitation energy within the sublattice domain and effectively minimizes the migration ofexcitation energy to defects.
Abstract: Lanthanide-doped nanocrystals can be used to upconvert infrared radiation into visible light, and are thought to be promising for a range of photonic and biological imaging applications. It is now shown that the upconversion efficiency can be improved by appropriately clustering the lanthanide ions on different structural sublattices.

Journal ArticleDOI
TL;DR: In this paper, in situ X-ray absorption spectroscopy (XAS) and x-ray diffraction (XRD) studies of the cathode material, Li1.2Ni0.15Co0.1Mn0.55O2 [0.5Li(Ni 0.375Co 0.25 Mn-0.375)O(2)
Abstract: The high-energy-density, Li-rich layered materials, i.e., xLiMO(2)(1-x)Li2MnO3, are promising candidate cathode materials for electric energy storage in plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs). The relatively low rate capability is one of the major problems that need to be resolved for these materials. To gain insight into the key factors that limit the rate capability, in situ X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) studies of the cathode material, Li1.2Ni0.15Co0.1Mn0.55O2 [0.5Li(Ni0.375Co0.25 Mn-0.375)O(2)0.5Li(2)MnO(3)], are carried out. The partial capacity contributed by different structural components and transition metal elements is elucidated and correlated with local structure changes. The characteristic reaction kinetics for each element are identified using a novel time-resolved XAS technique. Direct experimental evidence is obtained showing that Mn sites have much poorer reaction kinetics both before and after the initial activation of Li2MnO3, compared to Ni and Co. These results indicate that Li2MnO3 may be the key component that limits the rate capability of Li-rich layered materials and provide guidance for designing Li-rich layered materials with the desired balance of energy density and rate capability for different applications.

Journal ArticleDOI
TL;DR: It is shown that gut microbiota composition depends on interactions between host diet and sex within populations of wild and laboratory fish, laboratory mice and humans, and similar sex-specific diet–microbiota correlations in humans.
Abstract: Vertebrates harbour diverse communities of symbiotic gut microbes. Host diet is known to alter microbiota composition, implying that dietary treatments might alleviate diseases arising from altered microbial composition (‘dysbiosis’). However, it remains unclear whether diet effects are general or depend on host genotype. Here we show that gut microbiota composition depends on interactions between host diet and sex within populations of wild and laboratory fish, laboratory mice and humans. Within each of two natural fish populations (threespine stickleback and Eurasian perch), among-individual diet variation is correlated with individual differences in gut microbiota. However, these diet–microbiota associations are sex dependent. We document similar sex-specific diet–microbiota correlations in humans. Experimental diet manipulations in laboratory stickleback and mice confirmed that diet affects microbiota differently in males versus females. The prevalence of such genotype by environment (sex by diet) interactions implies that therapies to treat dysbiosis might have sex-specific effects.