scispace - formally typeset
Search or ask a question
Institution

Argonne National Laboratory

FacilityLemont, Illinois, United States
About: Argonne National Laboratory is a facility organization based out in Lemont, Illinois, United States. It is known for research contribution in the topics: Scattering & Superconductivity. The organization has 28461 authors who have published 64372 publications receiving 2479249 citations. The organization is also known as: ANL & Metallurgical Laboratory.
Topics: Scattering, Superconductivity, Neutron, Thin film, Ion


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that high-quality read length and abundance are the primary factors differentiating correct from erroneous reads produced by Illumina GAIIx, HiSeq and MiSeq instruments.
Abstract: High-throughput sequencing has revolutionized microbial ecology, but read quality remains a considerable barrier to accurate taxonomy assignment and α-diversity assessment for microbial communities. We demonstrate that high-quality read length and abundance are the primary factors differentiating correct from erroneous reads produced by Illumina GAIIx, HiSeq and MiSeq instruments. We present guidelines for user-defined quality-filtering strategies, enabling efficient extraction of high-quality data and facilitating interpretation of Illumina sequencing results.

2,931 citations

Journal ArticleDOI
TL;DR: The research focuses on the durability of polymer electrolyte fuel cells (PEFCs), in particular, membrane degradation, and he has been involved in NEDO R&D research projects on PEFC durability since 2001.
Abstract: Rod Borup is a Team Leader in the fuel cell program at Los Alamos National Lab in Los Alamos, New Mexico. He received his B.S.E. in Chemical Engineering from the University of Iowa in 1988 and his Ph.D. from the University of Washington in 1993. He has worked on fuel cell technology since 1994, working in the areas of hydrogen production and PEM fuel cell stack components. He has been awarded 12 U.S. patents, authored over 40 papers related to fuel cell technology, and presented over 50 oral papers at national meetings. His current main research area is related to water transport in PEM fuel cells and PEM fuel cell durability. Recently, he was awarded the 2005 DOE Hydrogen Program R&D Award for the most significant R&D contribution of the year for his team's work in fuel cell durability and was the Principal Investigator for the 2004 Fuel Cell Seminar (San Antonio, TX, USA) Best Poster Award. Jeremy Meyers is an Assistant Professor of materials science and engineering and mechanical engineering at the University of Texas at Austin, where his research focuses on the development of electrochemical energy systems and materials. Prior to joining the faculty at Texas, Jeremy workedmore » as manager of the advanced transportation technology group at UTC Power, where he was responsible for developing new system designs and components for automotive PEM fuel cell power plants. While at UTC Power, Jeremy led several customer development projects and a DOE-sponsored investigation into novel catalysts and membranes for PEM fuel cells. Jeremy has coauthored several papers on key mechanisms of fuel cell degradation and is a co-inventor of several patents. In 2006, Jeremy and several colleagues received the George Mead Medal, UTC's highest award for engineering achievement, and he served as the co-chair of the Gordon Research Conference on fuel cells. Jeremy received his Ph.D. in Chemical Engineering from the University of California at Berkeley and holds a Bachelor's Degree in Chemical Engineering from Stanford University. Bryan Pivovar received his B.S. in Chemical Engineering from the University of Wisconsin in 1994. He completed his Ph.D. in Chemical Engineering at the University of Minnesota in 2000 under the direction of Profs. Ed Cussler and Bill Smyrl, studying transport properties in fuel cell electrolytes. He continued working in the area of polymer electrolyte fuel cells at Los Alamos National Laboratory as a post-doc (2000-2001), as a technical staff member (2001-2005), and in his current position as a team leader (2005-present). In this time, Bryan's research has expanded to include further aspects of fuel cell operation, including electrodes, subfreezing effects, alternative polymers, hydroxide conductors, fuel cell interfaces, impurities, water transport, and high-temperature membranes. Bryan has served at various levels in national and international conferences and workshops, including organizing a DOE sponsored workshop on freezing effects in fuel cells and an ARO sponsored workshop on alkaline membrane fuel cells, and he was co-chair of the 2007 Gordon Research Conference on Fuel Cells. Minoru Inaba is a Professor at the Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Japan. He received his B.Sc. from the Faculty of Engineering, Kyoto University, in 1984 and his M.Sc. in 1986 and his Dr. Eng. in 1995 from the Graduate School of Engineering, Kyoto University. He has worked on electrochemical energy conversion systems including fuel cells and lithium-ion batteries at Kyoto University (1992-2002) and at Doshisha University (2002-present). His primary research interest is the durability of polymer electrolyte fuel cells (PEFCs), in particular, membrane degradation, and he has been involved in NEDO R&D research projects on PEFC durability since 2001. He has authored over 140 technical papers and 30 review articles. Kenichiro Ota is a Professor of the Chemical Energy Laboratory at the Graduate School of Engineering, Yokohama National University, Japan. He received his B.S.E. in Applied Chemistry from the University of Tokyo in 1968 and his Ph.D. from the University of Tokyo in 1973. He has worked on hydrogen energy and fuel cells since 1974, working on materials science for fuel cells and water electrolysis. He has published more than 150 original papers, 70 review papers, and 50 scientific books. He is now the president of the Hydrogen Energy Systems Society of Japan, the chairman of the Fuel Cell Research Group of the Electrochemical Society of Japan, and the chairman of the National Committee for the Standardization of the Stationary Fuel Cells. ABSTRACT TRUNCATED« less

2,921 citations

Journal ArticleDOI
TL;DR: The newly developed GSAS-II software is a general purpose package for data reduction, structure solution and structure refinement that can be used with both single-crystal and powder diffraction data from both neutron and X-ray sources, including laboratory and synchrotron sources, collected on both two- and one-dimensional detectors.
Abstract: The newly developed GSAS-II software is a general purpose package for data reduction, structure solution and structure refinement that can be used with both single-crystal and powder diffraction data from both neutron and X-ray sources, including laboratory and synchrotron sources, collected on both two- and one-dimensional detectors. It is intended that GSAS-II will eventually replace both the GSAS and the EXPGUI packages, as well as many other utilities. GSAS-II is open source and is written largely in object-oriented Python but offers speeds comparable to compiled code because of its reliance on the Python NumPy and SciPy packages for computation. It runs on all common computer platforms and offers highly integrated graphics, both for a user interface and for interpretation of parameters. The package can be applied to all stages of crystallographic analysis for constant-wavelength X-ray and neutron data. Plans for considerable additional development are discussed.

2,914 citations

Journal ArticleDOI
TL;DR: The main roles of material science in the development of LIBs are discussed, with a statement of caution for the current modern battery research along with a brief discussion on beyond lithium-ion battery chemistries.
Abstract: Over the past 30 years, significant commercial and academic progress has been made on Li-based battery technologies. From the early Li-metal anode iterations to the current commercial Li-ion batteries (LIBs), the story of the Li-based battery is full of breakthroughs and back tracing steps. This review will discuss the main roles of material science in the development of LIBs. As LIB research progresses and the materials of interest change, different emphases on the different subdisciplines of material science are placed. Early works on LIBs focus more on solid state physics whereas near the end of the 20th century, researchers began to focus more on the morphological aspects (surface coating, porosity, size, and shape) of electrode materials. While it is easy to point out which specific cathode and anode materials are currently good candidates for the next-generation of batteries, it is difficult to explain exactly why those are chosen. In this review, for the reader a complete developmental story of LIB should be clearly drawn, along with an explanation of the reasons responsible for the various technological shifts. The review will end with a statement of caution for the current modern battery research along with a brief discussion on beyond lithium-ion battery chemistries.

2,867 citations

Journal ArticleDOI
TL;DR: In this paper, a transient hot-wire method was used to measure the thermal conductivity of a small amount of nanoparticles and the experimental results showed that these nanoparticles have substantially higher thermal conductivities than the same liquids without nanoparticles.
Abstract: Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al{sub 2}O{sub 3} particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.

2,811 citations


Authors

Showing all 28631 results

NameH-indexPapersCitations
Yi Chen2174342293080
Jing Wang1844046202769
David A. Weitz1781038114182
Jie Zhang1784857221720
John A. Rogers1771341127390
Hyun-Chul Kim1764076183227
Yang Gao1682047146301
Gang Chen1673372149819
Chad A. Mirkin1641078134254
Rodney S. Ruoff164666194902
Qiang Zhang1611137100950
David Jonathan Hofman1591407140442
Tobin J. Marks1591621111604
Yongsun Kim1562588145619
Mercouri G. Kanatzidis1521854113022
Network Information
Related Institutions (5)
Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Max Planck Society
406.2K papers, 19.5M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202341
2022343
20212,625
20202,800
20192,695
20182,537