scispace - formally typeset
Search or ask a question
Institution

Arista Networks

About: Arista Networks is a based out in . It is known for research contribution in the topics: Network element & Networking hardware. The organization has 280 authors who have published 289 publications receiving 2497 citations.


Papers
More filters
Patent
27 Aug 1998
TL;DR: In this article, a flexible, policy-based, mechanism for managing, monitoring, and prioritizing traffic within a network and allocating bandwidth to achieve true quality of service (QoS) is provided.
Abstract: A flexible, policy-based, mechanism for managing, monitoring, and prioritizing traffic within a network and allocating bandwidth to achieve true quality of service (QoS) is provided. According to one aspect of the present invention, a method is provided for managing bandwidth allocation in a network that employs a non-deterministic access protocol, such as an Ethernet network. A packet forwarding device receives information indicative of a set of traffic groups, such as: a MAC address, or IEEE 802.1p priority indicator or 802.1Q frame tag, if the QoS policy is based upon individual station applications; or a physical port if the QoS policy is based purely upon topology. The packet forwarding device additionally receives bandwidth parameters corresponding to the traffic groups. After receiving a packet associated with one of the traffic groups on a first port, the packet forwarding device schedules the packet for transmission from a second port based upon bandwidth parameters corresponding to the traffic group with which the packet is associated. According to another aspect of the present invention, a method is provided for managing bandwidth allocation in a packet forwarding device. The packet forwarding device receives information indicative of a set of traffic groups. The packet forwarding device additionally receives information defining a QoS policy for the traffic groups. After a packet is received by the packet forwarding device, a traffic group with which the packet is associated is identified. Subsequently, rather than relying on an end-to-end signaling protocol for scheduling, the packet is scheduled for transmission based upon the QoS policy for the identified traffic group.

808 citations

Journal ArticleDOI
TL;DR: Opportunistic Flooding is introduced, a novel design tailored for low-duty-cycle networks with unreliable wireless links and predetermined working schedules and achieves significantly shorter flooding delay while consuming only 20-60% of the transmission energy.
Abstract: Flooding service has been investigated extensively in wireless networks to efficiently disseminate network-wide commands, configurations, and code binaries. However, little work has been done on low-duty-cycle wireless sensor networks in which nodes stay asleep most of the time and wake up asynchronously. In this type of network, a broadcasting packet is rarely received by multiple nodes simultaneously, a unique constraining feature that makes existing solutions unsuitable. In this paper, we introduce Opportunistic Flooding, a novel design tailored for low-duty-cycle networks with unreliable wireless links and predetermined working schedules. Starting with an energy-optimal tree structure, probabilistic forwarding decisions are made at each sender based on the delay distribution of next-hop receivers. Only opportunistically early packets are forwarded via links outside the tree to reduce the flooding delay and redundancy in transmission. We further propose a forwarder selection method to alleviate the hidden terminal problem and a link-quality-based backoff method to resolve simultaneous forwarding operations. We show by extensive simulations and test-bed implementations that Opportunistic Flooding is close to the optimal performance achievable by oracle flooding designs. Compared with Improved Traditional Flooding, our design achieves significantly shorter flooding delay while consuming only 20-60% of the transmission energy.

142 citations

Patent
01 Jul 2014
TL;DR: In this article, the authors describe the use of overlay routing mechanisms in an Internet Protocol (IP) fabric to enable communication between hosts or virtual machines in different layer 2 domains to communication.
Abstract: In general, embodiments of the invention relate to routing packets between hosts or virtual machines in different layer 2 domains. More specifically, embodiments of the invention relate to using overlay routing mechanisms in an Internet Protocol (IP) fabric to enable communication between hosts or virtual machines in different layer 2 domains to communication. The overlay routing mechanisms may include direct routing, indirect routing, naked routing, or a combination thereof (e.g., hybrid routing).

72 citations

Journal ArticleDOI
TL;DR: In this paper, two machine learning techniques, bagged regression trees and feed-forward neural networks, were used to estimate spatially distributed snow water equivalent (SWE) by calculating snowmelt backward from a remotely sensed date of disappearance.
Abstract: . In the mountains, snowmelt often provides most of the runoff. Operational estimates use imagery from optical and passive microwave sensors, but each has its limitations. An accurate approach, which we validate in Afghanistan and the Sierra Nevada USA, reconstructs spatially distributed snow water equivalent (SWE) by calculating snowmelt backward from a remotely sensed date of disappearance. However, reconstructed SWE estimates are available only retrospectively; they do not provide a forecast. To estimate SWE throughout the snowmelt season, we consider physiographic and remotely sensed information as predictors and reconstructed SWE as the target. The period of analysis matches the AMSR-E radiometer's lifetime from 2003 to 2011, for the months of April through June. The spatial resolution of the predictions is 3.125 km, to match the resolution of a microwave brightness temperature product. Two machine learning techniques – bagged regression trees and feed-forward neural networks – produced similar mean results, with 0–14 % bias and 46–48 mm RMSE on average. Nash–Sutcliffe efficiencies averaged 0.68 for all years. Daily SWE climatology and fractional snow-covered area are the most important predictors. We conclude that these methods can accurately estimate SWE during the snow season in remote mountains, and thereby provide an independent estimate to forecast runoff and validate other methods to assess the snow resource.

58 citations

Patent
09 Jan 2015
TL;DR: In this article, a method and system for securing a VXLAN environment, including configuring a default network policy associated with interfaces of the network device, for dropping all VVLAN frames including a VVEP attribute, was presented.
Abstract: A method and system for securing a VXLAN environment, including configuring a default network policy, associated with interfaces of the network device, for dropping all VXLAN frames including a VXLAN attribute; obtaining, by the network device, registered VTEP identifiers; determining, using the registered VTEP identifiers, that an interface of the network device is operatively connected to a registered VTEP associated with a registered VTEP identifier; disassociating the default network policy from the interface based on the determination; receiving, at the interface, a frame; performing a first verification that the frame is a VXLAN frame by examining the frame to determine that the frame includes the VXLAN attribute; performing a second verification to determine that the VXLAN frame includes a registered VTEP identifier; allowing, based on the first verification and the second verification, the network device to process the VXLAN frame; and processing the VXLAN frame.

53 citations


Network Information
Related Institutions (5)
Orange S.A.
9.1K papers, 156.4K citations

72% related

Télécom ParisTech
7.7K papers, 191.4K citations

72% related

Alcatel-Lucent
53.3K papers, 1.4M citations

69% related

Bell Labs
59.8K papers, 3.1M citations

69% related

Nippon Telegraph and Telephone
22.3K papers, 430.4K citations

69% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202118
202049
201938
201823
201737
201636