scispace - formally typeset
Search or ask a question
Institution

AT&T Labs

Company
About: AT&T Labs is a based out in . It is known for research contribution in the topics: Network packet & The Internet. The organization has 1879 authors who have published 5595 publications receiving 483151 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work introduces, analyzes and demonstrates a recursive hierarchical generalization of the widely used hidden Markov models, which is motivated by the complex multi-scale structure which appears in many natural sequences, particularly in language, handwriting and speech.
Abstract: We introduce, analyze and demonstrate a recursive hierarchical generalization of the widely used hidden Markov models, which we name Hierarchical Hidden Markov Models (HHMM) Our model is motivated by the complex multi-scale structure which appears in many natural sequences, particularly in language, handwriting and speech We seek a systematic unsupervised approach to the modeling of such structures By extending the standard Baum-Welch (forward-backward) algorithm, we derive an efficient procedure for estimating the model parameters from unlabeled data We then use the trained model for automatic hierarchical parsing of observation sequences We describe two applications of our model and its parameter estimation procedure In the first application we show how to construct hierarchical models of natural English text In these models different levels of the hierarchy correspond to structures on different length scales in the text In the second application we demonstrate how HHMMs can be used to automatically identify repeated strokes that represent combination of letters in cursive handwriting

1,050 citations

Journal ArticleDOI
TL;DR: A minimum mean-square-error (MMSE) channel estimator is derived, which makes full use of the time- and frequency-domain correlations of the frequency response of time-varying dispersive fading channels and can significantly improve the performance of OFDM systems in a rapid dispersion fading channel.
Abstract: Orthogonal frequency-division multiplexing (OFDM) modulation is a promising technique for achieving the high bit rates required for a wireless multimedia service. Without channel estimation and tracking, OFDM systems have to use differential phase-shift keying (DPSK), which has a 3-dB signal-to-noise ratio (SNR) loss compared with coherent phase-shift keying (PSK). To improve the performance of OFDM systems by using coherent PSK, we investigate robust channel estimation for OFDM systems. We derive a minimum mean-square-error (MMSE) channel estimator, which makes full use of the time- and frequency-domain correlations of the frequency response of time-varying dispersive fading channels. Since the channel statistics are usually unknown, we also analyze the mismatch of the estimator-to-channel statistics and propose a robust channel estimator that is insensitive to the channel statistics. The robust channel estimator can significantly improve the performance of OFDM systems in a rapid dispersive fading channel.

1,039 citations

Journal ArticleDOI
TL;DR: A result of Johnson and Lindenstrauss shows that a set of n points in high dimensional Euclidean space can be mapped into an O(log n/e2)-dimensional Euclidesan space such that the distance between any two points changes by only a factor of (1 ± e).
Abstract: A result of Johnson and Lindenstrauss [13] shows that a set of n points in high dimensional Euclidean space can be mapped into an O(log n/e2)-dimensional Euclidean space such that the distance between any two points changes by only a factor of (1 ± e). In this note, we prove this theorem using elementary probabilistic techniques.

1,036 citations

Proceedings ArticleDOI
25 Jun 2012
TL;DR: This paper develops the first empirically derived comprehensive power model of a commercial LTE network with less than 6% error rate and state transitions matching the specifications, and identifies that the performance bottleneck for web-based applications lies less in the network, compared to the previous study in 3G.
Abstract: With the recent advent of 4G LTE networks, there has been increasing interest to better understand the performance and power characteristics, compared with 3G/WiFi networks. In this paper, we take one of the first steps in this direction.Using a publicly deployed tool we designed for Android called 4GTest attracting more than 3000 users within 2 months and extensive local experiments, we study the network performance of LTE networks and compare with other types of mobile networks. We observe LTE generally has significantly higher downlink and uplink throughput than 3G and even WiFi, with a median value of 13Mbps and 6Mbps, respectively. We develop the first empirically derived comprehensive power model of a commercial LTE network with less than 6% error rate and state transitions matching the specifications. Using a comprehensive data set consisting of 5-month traces of 20 smartphone users, we carefully investigate the energy usage in 3G, LTE, and WiFi networks and evaluate the impact of configuring LTE-related parameters. Despite several new power saving improvements, we find that LTE is as much as 23 times less power efficient compared with WiFi, and even less power efficient than 3G, based on the user traces and the long high power tail is found to be a key contributor. In addition, we perform case studies of several popular applications on Android in LTE and identify that the performance bottleneck for web-based applications lies less in the network, compared to our previous study in 3G [24]. Instead, the device's processing power, despite the significant improvement compared to our analysis two years ago, becomes more of a bottleneck.

1,029 citations

Journal ArticleDOI
TL;DR: This paper begins by reviewing existing notions of security and proposes new and stronger security definitions, and presents two constructions that show secure under these new definitions and are more efficient than all previous constructions.
Abstract: Searchable symmetric encryption SSE allows a party to outsource the storage of his data to another party in a private manner, while maintaining the ability to selectively search over it. This problem has been the focus of active research and several security definitions and constructions have been proposed. In this paper we begin by reviewing existing notions of security and propose new and stronger security definitions. We then present two constructions that we show secure under our new definitions. Interestingly, in addition to satisfying stronger security guarantees, our constructions are more efficient than all previous constructions.Further, prior work on SSE only considered the setting where only the owner of the data is capable of submitting search queries. We consider the natural extension where an arbitrary group of parties other than the owner can submit search queries. We formally define SSE in this multi-user setting, and present an efficient construction.

1,023 citations


Authors

Showing all 1881 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Scott Shenker150454118017
Paul Shala Henry13731835971
Peter Stone130122979713
Yann LeCun121369171211
Louis E. Brus11334763052
Jennifer Rexford10239445277
Andreas F. Molisch9677747530
Vern Paxson9326748382
Lorrie Faith Cranor9232628728
Ward Whitt8942429938
Lawrence R. Rabiner8837870445
Thomas E. Graedel8634827860
William W. Cohen8538431495
Michael K. Reiter8438030267
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

94% related

Google
39.8K papers, 2.1M citations

91% related

Hewlett-Packard
59.8K papers, 1.4M citations

89% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20225
202133
202069
201971
2018100
201791