scispace - formally typeset
Search or ask a question
Institution

AT&T Labs

Company
About: AT&T Labs is a based out in . It is known for research contribution in the topics: Network packet & The Internet. The organization has 1879 authors who have published 5595 publications receiving 483151 citations.


Papers
More filters
Journal ArticleDOI
B. Goode1
10 Dec 2002
TL;DR: The factors involved in making a high-quality VoIP call and the engineering tradeoffs that must be made between delay and the efficient use of bandwidth are discussed and various techniques to achieve network quality of service are discussed.
Abstract: During the Internet stock bubble, articles in the trade press frequently said that, in the near future, telephone traffic would be just another application running over the Internet. Such statements gloss over many engineering details that preclude voice from being just another Internet application. This paper deals with the technical aspects of implementing voice over Internet protocol (VoIP), without speculating on the timetable for convergence. First, the paper discusses the factors involved in making a high-quality VoIP call and the engineering tradeoffs that must be made between delay and the efficient use of bandwidth. After a discussion of codec selection and the delay budget, there is a discussion of various techniques to achieve network quality of service. Since call setup is very important, the paper next gives an overview of several VoIP call signaling protocols, including H.323, SIP, MGCP, and Megaco/H.248. There is a section on telephony routing over IP (TRIP). Finally, the paper explains some VoIP issues with network address translation and firewalls.

568 citations

Book ChapterDOI
01 Jun 2001
TL;DR: The concept of trust management is introduced, its basic principles are explained, and some existing trust-management engines are described, including PoHcyMaker and KeyNote, which allow for increased flexibility and expressibility, as well as standardization of modern, scalable security mechanisms.
Abstract: Existing authorization mechanisms fail to provide powerful and robust tools for handling security at the scale necessary for today's Internet. These mechanisms are coming under increasing strain from the development and deployment of systems that increase the programmability of the Internet. Moreover, this "increased flexibility through programmability" trend seems to be accelerating with the advent of proposals such as Active Networking and Mobile Agents. The trust-management approach to distributed-system security was developed as an answer to the inadequacy of traditional authorization mechanisms. Trust-management engines avoid the need to resolve "identities" in an authorization decision. Instead, they express privileges and restrictions in a programming language. This allows for increased flexibility and expressibility, as well as standardization of modern, scalable security mechanisms. Further advantages of the trust-management approach include proofs that requested transactions comply with local policies and system architectures that encourage developers and administrators to consider an application's security policy carefully and specify it explicitly. In this paper, we examine existing authorization mechanisms and their inadequacies. We introduce the concept of trust management, explain its basic principles, and describe some existing trust-management engines, including PoHcyMaker and KeyNote. We also report on our experience using trust-management engines in several distributed-system applications.

563 citations

Proceedings ArticleDOI
06 Jul 2001
TL;DR: The most impressive feature of the data structure is its constant query time, hence the name ``oracle', which provides faster constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of weighted or unweighted graphs.
Abstract: Let G=(V,E) be an undirected weighted graph with |V|=n and |E|=m. Let k\ge 1 be an integer. We show that G=(V,E) can be preprocessed in O(kmn^{1/k}) expected time, constructing a data structure of size O(kn^{1+1/k}), such that any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance returned is of stretch at most 2k-1, i.e., the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and 2k-1. We show that a 1963 girth conjecture of Erd{\H{o}}s, implies that ω(n^{1+1/k}) space is needed in the worst case for any real stretch strictly smaller than 2k+1. The space requirement of our algorithm is, therefore, essentially optimal. The most impressive feature of our data structure is its constant query time, hence the name oracle. Previously, data structures that used only O(n^{1+1/k}) space had a query time of ω(n^{1/k}) and a slightly larger, non-optimal, stretch. Our algorithms are extremely simple and easy to implement efficiently. They also provide faster constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of weighted or unweighted graphs.}

563 citations

Book ChapterDOI
Vladimir Vapnik1
01 Jan 1998
TL;DR: For the Support Vector method both the quality of solution and the complexity of the solution does not depend directly on the dimensionality of an input space, and on the basis of this technique one can obtain a good estimate using a given number of high-dimensional data.
Abstract: This chapter describes the Support Vector technique for function estimation problems such as pattern recognition, regression estimation, and solving linear operator equations. It shows that for the Support Vector method both the quality of solution and the complexity of the solution does not depend directly on the dimensionality of an input space. Therefore, on the basis of this technique one can obtain a good estimate using a given number of high-dimensional data.

561 citations

Proceedings ArticleDOI
03 Jul 2001
TL;DR: Several compact routing schemes for general weighted undirected networks are described, which achieve a near-optimal tradeoff between the size of the routing tables used and the resulting stretch.
Abstract: We describe several compact routing schemes for general weighted undirected networks. Our schemes are simple and easy to implement. The routing tables stored at the nodes of the network are all very small. The headers attached to the routed messages, including the name of the destination, are extremely short. The routing decision at each node takes constant time. Yet, the stretch of these routing schemes, i.e., the worst ratio between the cost of the path on which a packet is routed and the cost of the cheapest path from source to destination, is a small constant. Our schemes achieve a near-optimal tradeoff between the size of the routing tables used and the resulting stretch. More specifically, we obtain: A routing scheme that uses only O (n 1/2) bits of memory at each node of an n-node network that has stretch 3. The space is optimal, up to logarithmic factors, in the sense that every routing scheme with stretch n2), and every routing scheme with stretch n3/2). The headers used are only (1 + O(1)) log2> n-bits long and each routing decision takes constant time. A variant of this scheme with [log2 n] -bit headers makes routing decisions in O(log log n) time. Also, for every integer k > 2, a general handshaking based routing scheme that uses O (n1/k) bits of memory at each node that has stretch 2k - 1. A conjecture of Erdos from 1963, settled for k = 3, 5, implies that the routing tables are of near-optimal size relative to the stretch. The handshaking is similar in spirit to a DNS lookup in TCP/IP. Headers are O(log2 n) bits long and each routing decision takes constant time. Without handshaking, the stretch of the scheme increases to 4k - 5. One ingredient used to obtain the routing schemes mentioned above, may be of independent practical and theoretical interest: A shortest path routing scheme for trees of arbitrary degree and diameter that assigns each vertex of an n-node tree a (1 + O(1)) log2 n-bit label. Given the label of a source node and the label of a destination it is possible to compute, in constant time, the port number of the edge from the source that heads in the direction of the destination. The general scheme for k > 2 also uses a clustering technique introduced recently by the authors. The clusters obtained using this technique induce a sparse and low stretch tree cover of the network. This essentially reduces routing in general networks into routing problems in trees that could be solved using the above technique.

560 citations


Authors

Showing all 1881 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Scott Shenker150454118017
Paul Shala Henry13731835971
Peter Stone130122979713
Yann LeCun121369171211
Louis E. Brus11334763052
Jennifer Rexford10239445277
Andreas F. Molisch9677747530
Vern Paxson9326748382
Lorrie Faith Cranor9232628728
Ward Whitt8942429938
Lawrence R. Rabiner8837870445
Thomas E. Graedel8634827860
William W. Cohen8538431495
Michael K. Reiter8438030267
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

94% related

Google
39.8K papers, 2.1M citations

91% related

Hewlett-Packard
59.8K papers, 1.4M citations

89% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20225
202133
202069
201971
2018100
201791