scispace - formally typeset
Search or ask a question
Institution

AT&T Labs

Company
About: AT&T Labs is a based out in . It is known for research contribution in the topics: Network packet & The Internet. The organization has 1879 authors who have published 5595 publications receiving 483151 citations.


Papers
More filters
Proceedings Article
03 Dec 1996
TL;DR: This work compares support vector regression (SVR) with a committee regression technique (bagging) based on regression trees and ridge regression done in feature space and expects that SVR will have advantages in high dimensionality space because SVR optimization does not depend on the dimensionality of the input space.
Abstract: A new regression technique based on Vapnik's concept of support vectors is introduced. We compare support vector regression (SVR) with a committee regression technique (bagging) based on regression trees and ridge regression done in feature space. On the basis of these experiments, it is expected that SVR will have advantages in high dimensionality space because SVR optimization does not depend on the dimensionality of the input space.

4,009 citations

Journal ArticleDOI
TL;DR: This special section includes descriptions of five recommender systems, which provide recommendations as inputs, which the system then aggregates and directs to appropriate recipients, and which combine evaluations with content analysis.
Abstract: Recommender systems assist and augment this natural social process. In a typical recommender system people provide recommendations as inputs, which the system then aggregates and directs to appropriate recipients. In some cases the primary transformation is in the aggregation; in others the system’s value lies in its ability to make good matches between the recommenders and those seeking recommendations. The developers of the first recommender system, Tapestry [1], coined the phrase “collaborative filtering” and several others have adopted it. We prefer the more general term “recommender system” for two reasons. First, recommenders may not explictly collaborate with recipients, who may be unknown to each other. Second, recommendations may suggest particularly interesting items, in addition to indicating those that should be filtered out. This special section includes descriptions of five recommender systems. A sixth article analyzes incentives for provision of recommendations. Figure 1 places the systems in a technical design space defined by five dimensions. First, the contents of an evaluation can be anything from a single bit (recommended or not) to unstructured textual annotations. Second, recommendations may be entered explicitly, but several systems gather implicit evaluations: GroupLens monitors users’ reading times; PHOAKS mines Usenet articles for mentions of URLs; and Siteseer mines personal bookmark lists. Third, recommendations may be anonymous, tagged with the source’s identity, or tagged with a pseudonym. The fourth dimension, and one of the richest areas for exploration, is how to aggregate evaluations. GroupLens, PHOAKS, and Siteseer employ variants on weighted voting. Fab takes that one step further to combine evaluations with content analysis. ReferralWeb combines suggested links between people to form longer referral chains. Finally, the (perhaps aggregated) evaluations may be used in several ways: negative recommendations may be filtered out, the items may be sorted according to numeric evaluations, or evaluations may accompany items in a display. Figures 2 and 3 identify dimensions of the domain space: The kinds of items being recommended and the people among whom evaluations are shared. Consider, first, the domain of items. The sheer volume is an important variable: Detailed textual reviews of restaurants or movies may be practical, but applying the same approach to thousands of daily Netnews messages would not. Ephemeral media such as netnews (most news servers throw away articles after one or two weeks) place a premium on gathering and distributing evaluations quickly, while evaluations for 19th century books can be gathered at a more leisurely pace. The last dimension describes the cost structure of choices people make about the items. Is it very costly to miss IT IS OFTEN NECESSARY TO MAKE CHOICES WITHOUT SUFFICIENT personal experience of the alternatives. In everyday life, we rely on

3,993 citations

Journal ArticleDOI
TL;DR: The results from a proof-of-concept prototype suggest that VM technology can indeed help meet the need for rapid customization of infrastructure for diverse applications, and this article discusses the technical obstacles to these transformations and proposes a new architecture for overcoming them.
Abstract: Mobile computing continuously evolve through the sustained effort of many researchers. It seamlessly augments users' cognitive abilities via compute-intensive capabilities such as speech recognition, natural language processing, etc. By thus empowering mobile users, we could transform many areas of human activity. This article discusses the technical obstacles to these transformations and proposes a new architecture for overcoming them. In this architecture, a mobile user exploits virtual machine (VM) technology to rapidly instantiate customized service software on a nearby cloudlet and then uses that service over a wireless LAN; the mobile device typically functions as a thin client with respect to the service. A cloudlet is a trusted, resource-rich computer or cluster of computers that's well-connected to the Internet and available for use by nearby mobile devices. Our strategy of leveraging transiently customized proximate infrastructure as a mobile device moves with its user through the physical world is called cloudlet-based, resource-rich, mobile computing. Crisp interactive response, which is essential for seamless augmentation of human cognition, is easily achieved in this architecture because of the cloudlet's physical proximity and one-hop network latency. Using a cloudlet also simplifies the challenge of meeting the peak bandwidth demand of multiple users interactively generating and receiving media such as high-definition video and high-resolution images. Rapid customization of infrastructure for diverse applications emerges as a critical requirement, and our results from a proof-of-concept prototype suggest that VM technology can indeed help meet this requirement.

3,599 citations

Journal ArticleDOI
TL;DR: The University of Florida Sparse Matrix Collection, a large and actively growing set of sparse matrices that arise in real applications, is described and a new multilevel coarsening scheme is proposed to facilitate this task.
Abstract: We describe the University of Florida Sparse Matrix Collection, a large and actively growing set of sparse matrices that arise in real applications The Collection is widely used by the numerical linear algebra community for the development and performance evaluation of sparse matrix algorithms It allows for robust and repeatable experiments: robust because performance results with artificially generated matrices can be misleading, and repeatable because matrices are curated and made publicly available in many formats Its matrices cover a wide spectrum of domains, include those arising from problems with underlying 2D or 3D geometry (as structural engineering, computational fluid dynamics, model reduction, electromagnetics, semiconductor devices, thermodynamics, materials, acoustics, computer graphics/vision, robotics/kinematics, and other discretizations) and those that typically do not have such geometry (optimization, circuit simulation, economic and financial modeling, theoretical and quantum chemistry, chemical process simulation, mathematics and statistics, power networks, and other networks and graphs) We provide software for accessing and managing the Collection, from MATLAB™, Mathematica™, Fortran, and C, as well as an online search capability Graph visualization of the matrices is provided, and a new multilevel coarsening scheme is proposed to facilitate this task

3,456 citations

Proceedings ArticleDOI
15 Apr 2007
TL;DR: T-closeness as mentioned in this paper requires that the distribution of a sensitive attribute in any equivalence class is close to the distributions of the attribute in the overall table (i.e., the distance between the two distributions should be no more than a threshold t).
Abstract: The k-anonymity privacy requirement for publishing microdata requires that each equivalence class (ie, a set of records that are indistinguishable from each other with respect to certain "identifying" attributes) contains at least k records Recently, several authors have recognized that k-anonymity cannot prevent attribute disclosure The notion of l-diversity has been proposed to address this; l-diversity requires that each equivalence class has at least l well-represented values for each sensitive attribute In this paper we show that l-diversity has a number of limitations In particular, it is neither necessary nor sufficient to prevent attribute disclosure We propose a novel privacy notion called t-closeness, which requires that the distribution of a sensitive attribute in any equivalence class is close to the distribution of the attribute in the overall table (ie, the distance between the two distributions should be no more than a threshold t) We choose to use the earth mover distance measure for our t-closeness requirement We discuss the rationale for t-closeness and illustrate its advantages through examples and experiments

3,281 citations


Authors

Showing all 1881 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Scott Shenker150454118017
Paul Shala Henry13731835971
Peter Stone130122979713
Yann LeCun121369171211
Louis E. Brus11334763052
Jennifer Rexford10239445277
Andreas F. Molisch9677747530
Vern Paxson9326748382
Lorrie Faith Cranor9232628728
Ward Whitt8942429938
Lawrence R. Rabiner8837870445
Thomas E. Graedel8634827860
William W. Cohen8538431495
Michael K. Reiter8438030267
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

94% related

Google
39.8K papers, 2.1M citations

91% related

Hewlett-Packard
59.8K papers, 1.4M citations

89% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20225
202133
202069
201971
2018100
201791