scispace - formally typeset
Search or ask a question
Institution

Austin Peay State University

EducationClarksville, Tennessee, United States
About: Austin Peay State University is a education organization based out in Clarksville, Tennessee, United States. It is known for research contribution in the topics: Population & Germination. The organization has 738 authors who have published 1060 publications receiving 29025 citations. The organization is also known as: APSU.


Papers
More filters
Journal ArticleDOI
TL;DR: A series of improvements to the spectroscopic reductions are described, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.
Abstract: This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11,663 deg^2 of imaging data, with most of the ~2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry on a 120° long, 2°.5 wide stripe along the celestial equator in the Southern Galactic Cap, with some regions covered by as many as 90 individual imaging runs. We include a co-addition of the best of these data, going roughly 2 mag fainter than the main survey over 250 deg^2. The survey has completed spectroscopy over 9380 deg^2; the spectroscopy is now complete over a large contiguous area of the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog, reducing the rms statistical errors at the bright end to 45 milliarcseconds per coordinate. We further quantify a systematic error in bright galaxy photometry due to poor sky determination; this problem is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.

5,665 citations

Journal ArticleDOI
Jennifer K. Adelman-McCarthy1, Marcel A. Agüeros2, S. Allam3, S. Allam1  +170 moreInstitutions (65)
TL;DR: The Sixth Data Release of the Sloan Digital Sky Survey (SDS) as discussed by the authors contains images and parameters of roughly 287 million objects over 9583 deg(2), including scans over a large range of Galactic latitudes and longitudes.
Abstract: This paper describes the Sixth Data Release of the Sloan Digital Sky Survey. With this data release, the imaging of the northern Galactic cap is now complete. The survey contains images and parameters of roughly 287 million objects over 9583 deg(2), including scans over a large range of Galactic latitudes and longitudes. The survey also includes 1.27 million spectra of stars, galaxies, quasars, and blank sky ( for sky subtraction) selected over 7425 deg2. This release includes much more stellar spectroscopy than was available in previous data releases and also includes detailed estimates of stellar temperatures, gravities, and metallicities. The results of improved photometric calibration are now available, with uncertainties of roughly 1% in g, r, i, and z, and 2% in u, substantially better than the uncertainties in previous data releases. The spectra in this data release have improved wavelength and flux calibration, especially in the extreme blue and extreme red, leading to the qualitatively better determination of stellar types and radial velocities. The spectrophotometric fluxes are now tied to point-spread function magnitudes of stars rather than fiber magnitudes. This gives more robust results in the presence of seeing variations, but also implies a change in the spectrophotometric scale, which is now brighter by roughly 0.35 mag. Systematic errors in the velocity dispersions of galaxies have been fixed, and the results of two independent codes for determining spectral classifications and red-shifts are made available. Additional spectral outputs are made available, including calibrated spectra from individual 15 minute exposures and the sky spectrum subtracted from each exposure. We also quantify a recently recognized underestimation of the brightnesses of galaxies of large angular extent due to poor sky subtraction; the bias can exceed 0.2 mag for galaxies brighter than r = 14 mag.

1,602 citations

Journal ArticleDOI
Brian Yanny1, Constance M. Rockosi2, Heidi Jo Newberg3, Gillian R. Knapp4, Jennifer K. Adelman-McCarthy1, Bonnie Alcorn1, S. Allam1, Carlos Allende Prieto5, Carlos Allende Prieto6, Deokkeun An7, K. S. J. Anderson8, K. S. J. Anderson9, Scott F. Anderson10, Coryn A. L. Bailer-Jones11, Steve Bastian1, Timothy C. Beers12, Eric F. Bell11, Vasily Belokurov13, Dmitry Bizyaev8, Norm Blythe8, John J. Bochanski10, William N. Boroski1, Jarle Brinchmann14, J. Brinkmann8, Howard Brewington8, Larry N. Carey10, Kyle M. Cudworth15, Michael L. Evans10, Nick Evans13, Evalyn Gates15, Boris T. Gänsicke16, Bruce Gillespie8, G. F. Gilmore13, Ada Nebot Gomez-Moran, Eva K. Grebel17, Jim Greenwell10, James E. Gunn4, Cathy Jordan8, Wendell Jordan8, Paul Harding18, Hugh C. Harris, John S. Hendry1, Diana Holder8, Inese I. Ivans4, Željko Ivezić10, Sebastian Jester11, Jennifer A. Johnson7, Stephen M. Kent1, S. J. Kleinman8, Alexei Y. Kniazev11, Jurek Krzesinski8, Richard G. Kron15, Nikolay Kuropatkin1, Svetlana Lebedeva1, Young Sun Lee12, R. French Leger1, Sébastien Lépine19, Steve Levine, Huan Lin1, Dan Long8, Craig P. Loomis4, Robert H. Lupton4, O. Malanushenko8, Viktor Malanushenko8, Bruce Margon2, David Martínez-Delgado11, P. M. McGehee20, Dave Monet, Heather L. Morrison18, Jeffrey A. Munn, Eric H. Neilsen1, Atsuko Nitta8, John E. Norris21, Daniel Oravetz8, Russell Owen10, Nikhil Padmanabhan22, Kaike Pan8, R. S. Peterson1, Jeffrey R. Pier, Jared Platson1, Paola Re Fiorentin23, Paola Re Fiorentin11, Gordon T. Richards24, Hans-Walter Rix11, David J. Schlegel22, Donald P. Schneider25, Matthias R. Schreiber26, Axel Schwope, Valena C. Sibley1, Audrey Simmons8, Stephanie A. Snedden8, J. Allyn Smith27, Larry Stark10, Fritz Stauffer8, Matthias Steinmetz, Christopher Stoughton1, Mark SubbaRao15, Mark SubbaRao28, Alexander S. Szalay29, Paula Szkody10, Aniruddha R. Thakar29, Sivarani Thirupathi12, Douglas L. Tucker1, A. Uomoto30, Daniel E. Vanden Berk25, S. Vidrih17, Yogesh Wadadekar31, Yogesh Wadadekar4, S. Watters8, R. Wilhelm32, Rosemary F. G. Wyse29, Jean Yarger8, Daniel B. Zucker13 
TL;DR: The Sloan Extension for Galactic Understanding and Exploration (SEGUE) Survey as mentioned in this paper obtained approximately 240,000 moderate-resolution spectra from 3900 to 9000 of fainter Milky Way stars (14.0 10 per resolution element).
Abstract: The Sloan Extension for Galactic Understanding and Exploration (SEGUE) Survey obtained {approx}240,000 moderate-resolution (R {approx} 1800) spectra from 3900 {angstrom} to 9000 {angstrom} of fainter Milky Way stars (14.0 10 per resolution element, stellar atmospheric parameters are estimated, including metallicity, surface gravity, and effective temperature. SEGUE obtained 3500 deg{sup 2} of additional ugriz imaging (primarily at low Galactic latitudes) providing precise multicolor photometry ({sigma}(g, r, i) {approx} 2%), ({sigma}(u, z) {approx} 3%) and astrometry ({approx}0.1) for spectroscopic target selection. The stellar spectra, imaging data, and derived parameter catalogs for this survey are publicly available as part of Sloan Digital Sky Survey Data Release 7.

1,133 citations

Journal ArticleDOI
TL;DR: Findings from this conceptual analysis suggested four of the most frequently used defining attributes of social support: emotional, instrumental, informational, and appraisal.
Abstract: Using the methodology of Walker and Avant, the purpose of this paper was to identify the most frequently used theoretical and operational definitions of social support. A positive relationship between social support and health is generally accepted in the literature. However, the set of dimensions used to define social support is inconsistent. In addition, few measurement tools have established reliability and validity. Findings from this conceptual analysis suggested four of the most frequently used defining attributes of social support: emotional, instrumental, informational, and appraisal. Social network, social embeddedness, and social climate were identified as antecedents of social support. Social support consequences were subsumed under the general rubric of positive health states. Examples were personal competence, health maintenance behaviours, effective coping behaviours, perceived control, sense of stability, recognition of self-worth, positive affect, psychological well-being, and decreased anxiety and depression. Recommendations for future research were made.

976 citations

Journal ArticleDOI
Željko Ivezić1, Steven M. Kahn2, J. Anthony Tyson3, Bob Abel4  +332 moreInstitutions (55)
TL;DR: The Large Synoptic Survey Telescope (LSST) as discussed by the authors is a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachon in northern Chile.
Abstract: We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way. LSST will be a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachon in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2 field of view, a 3.2-gigapixel camera, and six filters (ugrizy) covering the wavelength range 320–1050 nm. The project is in the construction phase and will begin regular survey operations by 2022. About 90% of the observing time will be devoted to a deep-wide-fast survey mode that will uniformly observe a 18,000 deg2 region about 800 times (summed over all six bands) during the anticipated 10 yr of operations and will yield a co-added map to r ~ 27.5. These data will result in databases including about 32 trillion observations of 20 billion galaxies and a similar number of stars, and they will serve the majority of the primary science programs. The remaining 10% of the observing time will be allocated to special projects such as Very Deep and Very Fast time domain surveys, whose details are currently under discussion. We illustrate how the LSST science drivers led to these choices of system parameters, and we describe the expected data products and their characteristics.

921 citations


Authors

Showing all 755 results

NameH-indexPapersCitations
Carol C. Baskin5955821187
Jerry M. Baskin5849520186
John M. Burke521048454
Jack W. Sites5119710577
Elizabeth J Elliott5135610399
Cynthia Garvan421635739
Brett K. Sandercock381584224
Philip C. Stouffer361196896
J. Allyn Smith344823961
Jun Huan301744422
Baqar A. Husaini29832828
Marylou Behnke29632445
Michael Conlon28822643
Ling Wang231112177
Andrew G. Hope22381215
Network Information
Related Institutions (5)
Kent State University
24.6K papers, 720.3K citations

86% related

University of Wisconsin–Milwaukee
28K papers, 936.4K citations

85% related

Ohio University
25.9K papers, 662.2K citations

85% related

Southern Illinois University Carbondale
24.8K papers, 667.3K citations

84% related

University of North Texas
26.9K papers, 705.3K citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202216
202181
202064
201967
201852