scispace - formally typeset
Search or ask a question

Showing papers by "Australian National University published in 2011"


Journal ArticleDOI
Jens Kattge1, Sandra Díaz2, Sandra Lavorel3, Iain Colin Prentice4, Paul Leadley5, Gerhard Bönisch1, Eric Garnier3, Mark Westoby4, Peter B. Reich6, Peter B. Reich7, Ian J. Wright4, Johannes H. C. Cornelissen8, Cyrille Violle3, Sandy P. Harrison4, P.M. van Bodegom8, Markus Reichstein1, Brian J. Enquist9, Nadejda A. Soudzilovskaia8, David D. Ackerly10, Madhur Anand11, Owen K. Atkin12, Michael Bahn13, Timothy R. Baker14, Dennis D. Baldocchi10, Renée M. Bekker15, Carolina C. Blanco16, Benjamin Blonder9, William J. Bond17, Ross A. Bradstock18, Daniel E. Bunker19, Fernando Casanoves20, Jeannine Cavender-Bares6, Jeffrey Q. Chambers21, F. S. Chapin22, Jérôme Chave3, David A. Coomes23, William K. Cornwell8, Joseph M. Craine24, B. H. Dobrin9, Leandro da Silva Duarte16, Walter Durka25, James J. Elser26, Gerd Esser27, Marc Estiarte28, William F. Fagan29, Jingyun Fang, Fernando Fernández-Méndez30, Alessandra Fidelis31, Bryan Finegan20, Olivier Flores32, H. Ford33, Dorothea Frank1, Grégoire T. Freschet34, Nikolaos M. Fyllas14, Rachael V. Gallagher4, Walton A. Green35, Alvaro G. Gutiérrez25, Thomas Hickler, Steven I. Higgins36, John G. Hodgson37, Adel Jalili, Steven Jansen38, Carlos Alfredo Joly39, Andrew J. Kerkhoff40, Don Kirkup41, Kaoru Kitajima42, Michael Kleyer43, Stefan Klotz25, Johannes M. H. Knops44, Koen Kramer, Ingolf Kühn16, Hiroko Kurokawa45, Daniel C. Laughlin46, Tali D. Lee47, Michelle R. Leishman4, Frederic Lens48, Tanja Lenz4, Simon L. Lewis14, Jon Lloyd14, Jon Lloyd49, Joan Llusià28, Frédérique Louault50, Siyan Ma10, Miguel D. Mahecha1, Peter Manning51, Tara Joy Massad1, Belinda E. Medlyn4, Julie Messier9, Angela T. Moles52, Sandra Cristina Müller16, Karin Nadrowski53, Shahid Naeem54, Ülo Niinemets55, S. Nöllert1, A. Nüske1, Romà Ogaya28, Jacek Oleksyn56, Vladimir G. Onipchenko57, Yusuke Onoda58, Jenny C. Ordoñez59, Gerhard E. Overbeck16, Wim A. Ozinga59, Sandra Patiño14, Susana Paula60, Juli G. Pausas60, Josep Peñuelas28, Oliver L. Phillips14, Valério D. Pillar16, Hendrik Poorter, Lourens Poorter59, Peter Poschlod61, Andreas Prinzing62, Raphaël Proulx63, Anja Rammig64, Sabine Reinsch65, Björn Reu1, Lawren Sack66, Beatriz Salgado-Negret20, Jordi Sardans28, Satomi Shiodera67, Bill Shipley68, Andrew Siefert69, Enio E. Sosinski70, Jean-François Soussana50, Emily Swaine71, Nathan G. Swenson72, Ken Thompson37, Peter E. Thornton73, Matthew S. Waldram74, Evan Weiher47, Michael T. White75, S. White11, S. J. Wright76, Benjamin Yguel3, Sönke Zaehle1, Amy E. Zanne77, Christian Wirth58 
Max Planck Society1, National University of Cordoba2, Centre national de la recherche scientifique3, Macquarie University4, University of Paris-Sud5, University of Minnesota6, University of Western Sydney7, VU University Amsterdam8, University of Arizona9, University of California, Berkeley10, University of Guelph11, Australian National University12, University of Innsbruck13, University of Leeds14, University of Groningen15, Universidade Federal do Rio Grande do Sul16, University of Cape Town17, University of Wollongong18, New Jersey Institute of Technology19, Centro Agronómico Tropical de Investigación y Enseñanza20, Lawrence Berkeley National Laboratory21, University of Alaska Fairbanks22, University of Cambridge23, Kansas State University24, Helmholtz Centre for Environmental Research - UFZ25, Arizona State University26, University of Giessen27, Autonomous University of Barcelona28, University of Maryland, College Park29, Universidad del Tolima30, University of São Paulo31, University of La Réunion32, University of York33, University of Sydney34, Harvard University35, Goethe University Frankfurt36, University of Sheffield37, University of Ulm38, State University of Campinas39, Kenyon College40, Royal Botanic Gardens41, University of Florida42, University of Oldenburg43, University of Nebraska–Lincoln44, Tohoku University45, Northern Arizona University46, University of Wisconsin–Eau Claire47, Naturalis48, James Cook University49, Institut national de la recherche agronomique50, Newcastle University51, University of New South Wales52, Leipzig University53, Columbia University54, Estonian University of Life Sciences55, Polish Academy of Sciences56, Moscow State University57, Kyushu University58, Wageningen University and Research Centre59, Spanish National Research Council60, University of Regensburg61, University of Rennes62, Université du Québec à Trois-Rivières63, Potsdam Institute for Climate Impact Research64, Technical University of Denmark65, University of California, Los Angeles66, Hokkaido University67, Université de Sherbrooke68, Syracuse University69, Empresa Brasileira de Pesquisa Agropecuária70, University of Aberdeen71, Michigan State University72, Oak Ridge National Laboratory73, University of Leicester74, Utah State University75, Smithsonian Institution76, University of Missouri77
01 Sep 2011
TL;DR: TRY as discussed by the authors is a global database of plant traits, including morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs, which can be used for a wide range of research from evolutionary biology, community and functional ecology to biogeography.
Abstract: Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.

2,017 citations


Journal ArticleDOI
TL;DR: In this article, the Anthropocene epoch has been formally recognized as a new epoch in Earth history, arguing that the advent of the Industrial Revolution around 1800 provides a logical start date for the new epoch.
Abstract: The human imprint on the global environment has now become so large and active that it rivals some of the great forces of Nature in its impact on the functioning of the Earth system. Although global-scale human influence on the environment has been recognized since the 1800s, the term Anthropocene, introduced about a decade ago, has only recently become widely, but informally, used in the global change research community. However, the term has yet to be accepted formally as a new geological epoch or era in Earth history. In this paper, we put forward the case for formally recognizing the Anthropocene as a new epoch in Earth history, arguing that the advent of the Industrial Revolution around 1800 provides a logical start date for the new epoch. We then explore recent trends in the evolution of the Anthropocene as humanity proceeds into the twenty-first century, focusing on the profound changes to our relationship with the rest of the living world and on early attempts and proposals for managing our relationship with the large geophysical cycles that drive the Earth's climate system.

1,484 citations


Journal ArticleDOI
25 Oct 2011
TL;DR: The Anthropocene is a reminder that the Holocene, during which complex human societies have developed, has been a stable, accommodating environment and is the only state of the Earth System that the authors know for sure can support contemporary society.
Abstract: Over the past century, the total material wealth of humanity has been enhanced. However, in the twenty-first century, we face scarcity in critical resources, the degradation of ecosystem services, and the erosion of the planet’s capability to absorb our wastes. Equity issues remain stubbornly difficult to solve. This situation is novel in its speed, its global scale and its threat to the resilience of the Earth System. The advent of the Anthropence, the time interval in which human activities now rival global geophysical processes, suggests that we need to fundamentally alter our relationship with the planet we inhabit. Many approaches could be adopted, ranging from geo-engineering solutions that purposefully manipulate parts of the Earth System to becoming active stewards of our own life support system. The Anthropocene is a reminder that the Holocene, during which complex human societies have developed, has been a stable, accommodating environment and is the only state of the Earth System that we know for sure can support contemporary society. The need to achieve effective planetary stewardship is urgent. As we go further into the Anthropocene, we risk driving the Earth System onto a trajectory toward more hostile states from which we cannot easily return.

1,222 citations


Journal ArticleDOI
TL;DR: It is predicted that epicormic resprouting could make eucalypt forests and woodlands an excellent long-term carbon bank for reducing atmospheric CO(2) compared with biomes with similar fire regimes in other continents.
Abstract: Fire is a major modifier of communities, but the evolutionary origins of its prevalent role in shaping current biomes are uncertain. Australia is among the most fire-prone continents, with most of the landmass occupied by the fire-dependent sclerophyll and savanna biomes. In contrast to biomes with similar climates in other continents, Australia has a tree flora dominated by a single genus, Eucalyptus, and related Myrtaceae. A unique mechanism in Myrtaceae for enduring and recovering from fire damage likely resulted in this dominance. Here, we find a conserved phylogenetic relationship between post-fire resprouting (epicormic) anatomy and biome evolution, dating from 60 to 62 Ma, in the earliest Palaeogene. Thus, fire-dependent communities likely existed 50 million years earlier than previously thought. We predict that epicormic resprouting could make eucalypt forests and woodlands an excellent long-term carbon bank for reducing atmospheric CO2 compared with biomes with similar fire regimes in other continents.

1,197 citations


Journal ArticleDOI
TL;DR: The raising of awareness and implementation of effective interventions for modifiable risk factors, such as overweight, obesity, maternal age, and smoking, are priorities for stillbirth prevention in high-income countries.

1,053 citations


Journal ArticleDOI
TL;DR: A population of Foxp3+Blimp-1+CD4+ T cells constituting 10–25% of the CXCR5highPD-1highCD4- T cells found in the germinal center after immunization with protein antigens are described.
Abstract: Follicular helper (T(FH)) cells provide crucial signals to germinal center B cells undergoing somatic hypermutation and selection that results in affinity maturation. Tight control of T(FH) numbers maintains self tolerance. We describe a population of Foxp3(+)Blimp-1(+)CD4(+) T cells constituting 10-25% of the CXCR5(high)PD-1(high)CD4(+) T cells found in the germinal center after immunization with protein antigens. These follicular regulatory T (T(FR)) cells share phenotypic characteristics with T(FH) and conventional Foxp3(+) regulatory T (T(reg)) cells yet are distinct from both. Similar to T(FH) cells, T(FR) cell development depends on Bcl-6, SLAM-associated protein (SAP), CD28 and B cells; however, T(FR) cells originate from thymic-derived Foxp3(+) precursors, not naive or T(FH) cells. T(FR) cells are suppressive in vitro and limit T(FH) cell and germinal center B cell numbers in vivo. In the absence of T(FR) cells, an outgrowth of non-antigen-specific B cells in germinal centers leads to fewer antigen-specific cells. Thus, the T(FH) differentiation pathway is co-opted by T(reg) cells to control the germinal center response.

1,019 citations


Journal ArticleDOI
TL;DR: The finding that invasive species are more plastic in a variety of traits but that non-invasive species respond just as well, if not better, when resources are limiting, has interesting implications for predicting responses to global change.
Abstract: Do invasive plant species have greater phenotypic plasticity than non-invasive species? And, if so, how does this affect their fitness relative to native, non-invasive species? What role might this play in plant invasions? To answer these long-standing questions, we conducted a meta-analysis using data from 75 invasive/non-invasive species pairs. Our analysis shows that invasive species demonstrate significantly higher phenotypic plasticity than non-invasive species. To examine the adaptive benefit of this plasticity, we plotted fitness proxies against measures of plasticity in several growth, morphological and physiological traits to test whether greater plasticity is associated with an improvement in estimated fitness. Invasive species were nearly always more plastic in their response to greater resource availability than non-invasives but this plasticity was only sometimes associated with a fitness benefit. Intriguingly, non-invasive species maintained greater fitness homoeostasis when comparing growth between low and average resource availability. Our finding that invasive species are more plastic in a variety of traits but that non-invasive species respond just as well, if not better, when resources are limiting, has interesting implications for predicting responses to global change.

976 citations


Journal ArticleDOI
TL;DR: This work presents the first experimental results with observations of the Peregrine soliton in a water wave tank, and proposes a new approach to modeling deep water waves using the nonlinear Schrödinger equation.
Abstract: The conventional definition of rogue waves in the ocean is that their heights, from crest to trough, are more than about twice the significant wave height, which is the average wave height of the largest one-third of nearby waves. When modeling deep water waves using the nonlinear Schr\"odinger equation, the most likely candidate satisfying this criterion is the so-called Peregrine solution. It is localized in both space and time, thus describing a unique wave event. Until now, experiments specifically designed for observation of breather states in the evolution of deep water waves have never been made in this double limit. In the present work, we present the first experimental results with observations of the Peregrine soliton in a water wave tank.

950 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present measurements of the baryon acoustic peak at redshifts z = 0.44, 0.6 and 0.73 in the galaxy correlation function of the final dataset of the WiggleZ Dark Energy Survey.
Abstract: We present measurements of the baryon acoustic peak at redshifts z = 0.44, 0.6 and 0.73 in the galaxy correlation function of the final dataset of the WiggleZ Dark Energy Survey. We combine our correlation function with lower-redshift measurements from the 6-degree Field Galaxy Survey and Sloan Digital Sky Survey, producing a stacked survey correlation function in which the statistical significance of the detection of the baryon acoustic peak is 4.9-σ relative to a zero-baryon model with no peak. We fit cosmological models to this combined baryon acoustic oscillation (BAO) dataset comprising six distance-redshift data points, and compare the results to similar fits to the latest compilation of supernovae (SNe) and Cosmic Microwave Background (CMB) data. The BAO and SNe datasets produce consistent measurements of the equation-ofstate w of dark energy, when separately combined with the CMB, providing a powerful check for systematic errors in either of these distance probes. Combining all datasets we determine w = 1.03 ± 0.08 for a flat Universe, consistent with a cosmological constant model. Assuming dark energy is a cosmological constant and varying the spatial curvature, we find k = 0.004± 0.006.

898 citations


Journal ArticleDOI
TL;DR: Evidence is emerging that a substantial part of diabetes susceptibility is acquired early in life, probably owing to fetal or neonatal programming via epigenetic phenomena, and maternal and early childhood health might, therefore, be crucial to the development of effective prevention strategies.

849 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reconcile two long-standing theories of stomatal conductance, i.e., the theoretical argument that stomata should act to minimize the amount of water used per unit carbon gained, and the empirical approach, which is most commonly used in vegetation models, is phenomenological, based on experimental observations of Stomatal behaviour in response to environmental conditions.
Abstract: Models of vegetation function are widely used to predict the effects of climate change on carbon, water and nutrient cycles of terrestrial ecosystems, and their feedbacks to climate. Stomatal conductance, the process that governs plant water use and carbon uptake, is fundamental to such models. In this paper, we reconcile two long-standing theories of stomatal conductance. The empirical approach, which is most commonly used in vegetation models, is phenomenological, based on experimental observations of stomatal behaviour in response to environmental conditions. The optimal approach is based on the theoretical argument that stomata should act to minimize the amount of water used per unit carbon gained. We reconcile these two approaches by showing that the theory of optimal stomatal conductance can be used to derive a model of stomatal conductance that is closely analogous to the empirical models. Consequently, we obtain a unified stomatal model which has a similar form to existing empirical models, but which now provides a theoretical interpretation for model parameter values. The key model parameter, g1 ,i s predicted to increase with growth temperature and with the marginal water cost of carbon gain. The new model is fitted to a range of datasets ranging from tropical to boreal trees. The parameter g1 is shown to vary with growth temperature, as predicted, and also with plant functional type. The model is shown to correctly capture responses of stomatal conductance to changing atmospheric CO2, and thus can be used to test for stomatal acclimation to elevated CO2. The reconciliation of the optimal and empirical approaches to modelling stomatal conductance is important for global change biology because it provides a simple theoretical framework for analyzing, and simulating, the coupling between carbon and water cycles under environmental change.

Journal ArticleDOI
TL;DR: PSII photodamage and the inhibition of repair are alleviated by photoprotection mechanisms associated with avoiding light absorption by the manganese cluster and successfully consuming or dissipating the light energy absorbed by photosynthetic pigments, respectively.

Journal ArticleDOI
TL;DR: A review of recent studies shows heterogeneity in the magnitude and direction of size responses, exposing a need for large-scale phylogenetically controlled comparative analyses of temporal size change as mentioned in this paper, which will increase both understanding of the underlying mechanisms and physiological consequences of size shifts and therefore, the ability to predict the sensitivities of species to climate change.
Abstract: A recently documented correlate of anthropogenic climate change involves reductions in body size, the nature and scale of the pattern leading to suggestions of a third universal response to climate warming. Because body size affects thermoregulation and energetics, changing body size has implications for resilience in the face of climate change. A review of recent studies shows heterogeneity in the magnitude and direction of size responses, exposing a need for large-scale phylogenetically controlled comparative analyses of temporal size change. Integrative analyses of museum data combined with new theoretical models of size-dependent thermoregulatory and metabolic responses will increase both understanding of the underlying mechanisms and physiological consequences of size shifts and, therefore, the ability to predict the sensitivities of species to climate change.

Journal ArticleDOI
J. Abadie1, B. P. Abbott1, R. Abbott1, T. D. Abbott2  +611 moreInstitutions (63)
TL;DR: In this paper, the authors demonstrate the squeezed-light enhancement of GEO600, which will be the GW observatory operated by the LIGO Scientific Collaboration in its search for GWs for the next 3-4 years.
Abstract: Around the globe several observatories are seeking the first direct detection of gravitational waves (GWs). These waves are predicted by Einstein’s general theory of relativity1 and are generated, for example, by black-hole binary systems2. Present GW detectors are Michelson-type kilometre-scale laser interferometers measuring the distance changes between mirrors suspended in vacuum. The sensitivity of these detectors at frequencies above several hundred hertz is limited by the vacuum (zero-point) fluctuations of the electromagnetic field. A quantum technology—the injection of squeezed light3—offers a solution to this problem. Here we demonstrate the squeezed-light enhancement of GEO 600, which will be the GW observatory operated by the LIGO Scientific Collaboration in its search for GWs for the next 3–4 years. GEO 600 now operates with its best ever sensitivity, which proves the usefulness of quantum entanglement and the qualification of squeezed light as a key technology for future GW astronomy4.

Journal ArticleDOI
TL;DR: Early-successional forest ecosystems that develop after stand-replacement or partial disturbances are diverse in species, processes, and structure as mentioned in this paper, including surviving organisms and organically derived structures, such as woody debris.
Abstract: Early-successional forest ecosystems that develop after stand-replacing or partial disturbances are diverse in species, processes, and structure. Post-disturbance ecosystems are also often rich in biological legacies, including surviving organisms and organically derived structures, such as woody debris. These legacies and post-disturbance plant communities provide resources that attract and sustain high species diversity, including numerous early-successional obligates, such as certain woodpeckers and arthropods. Early succession is the only period when tree canopies do not dominate the forest site, and so this stage can be characterized by high productivity of plant species (including herbs and shrubs), complex food webs, large nutrient fluxes, and high structural and spatial complexity. Different disturbances contrast markedly in terms of biological legacies, and this will influence the resultant physical and biological conditions, thus affecting successional pathways. Management activities, such as post-disturbance logging and dense tree planting, can reduce the richness within and the duration of early-successional ecosystems. Where maintenance of biodiversity is an objective, the importance and value of these natural early-successional ecosystems are underappreciated.

Journal ArticleDOI
TL;DR: Evidence shows that some social policies can be effective in countering postponement and a growing body of literature shows that female employment and childrearing can be combined when the reduction in work-family conflict is facilitated by policy intervention.
Abstract: BACKGROUND Never before have parents in most Western societies had their first children as late as in recent decades. What are the central reasons for postponement? What is known about the link between the delay of childbearing and social policy incentives to counter these trends? This review engages in a systematic analysis of existing evidence to extract the maximum amount of knowledge about the reasons for birth postponement and the effectiveness of social policy incentives.

Journal ArticleDOI
Olle Terenius1, Alexie Papanicolaou2, Alexie Papanicolaou3, Jennie S. Garbutt4, Ioannis Eleftherianos5, Hanneke Huvenne6, Sriramana Kanginakudru7, Merete Albrechtsen8, Chunju An9, Jean Luc Aymeric10, Andrea Barthel11, Piotr Bebas12, Kavita Bitra13, Alejandra Bravo14, François Chevalier10, Derek Collinge15, Derek Collinge2, Cristina M. Crava16, Ruud A. de Maagd17, Bernard Duvic10, Martin A. Erlandson18, Martin A. Erlandson19, Ingrid Faye20, G Felfoldi21, Haruhiko Fujiwara22, Ryo Futahashi22, Ryo Futahashi23, Archana S. Gandhe7, H.S. Gatehouse24, L. N. Gatehouse24, Jadwiga M. Giebultowicz25, Isabel Gómez14, Cornelis J. P. Grimmelikhuijzen8, Astrid T. Groot11, Frank Hauser8, David G. Heckel11, Dwayne D. Hegedus19, Dwayne D. Hegedus18, Steven Hrycaj3, Lihua Huang2, J. Joe Hull26, Kostas Iatrou6, Masatoshi Iga6, Michael R. Kanost9, Joanna Kotwica12, Changyou Li2, Jianghong Li2, Jisheng Liu6, Magnus Lundmark8, Shogo Matsumoto4, Martina Meyering-Vos7, Peter J. Millichap4, Antónia Monteiro8, Nirotpal Mrinal7, Teruyuki Niimi9, Daniela Nowara8, Atsushi Ohnishi4, Vicencio Oostra27, Katsuhisa Ozaki, Maria P. Papakonstantinou6, Aleksandar Popadic3, Manchikatla Venkat Rajam12, Suzanne V. Saenko27, Robert M. Simpson24, Mario Soberón14, Michael R. Strand13, Shuichiro Tomita13, Umut Toprak18, Ping Wang2, Choon Wei Wee15, Steven Whyard28, Wenqing Zhang17, Javaregowda Nagaraju7, Richard H. ffrench-Constant3, Salvador Herrero17, Salvador Herrero16, Karl H.J. Gordon2, Luc Swevers6, Guy Smagghe6 
TL;DR: Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity and that gene expression in epidermal tissues seems to be most difficult to silence.

Journal ArticleDOI
TL;DR: It is concluded that underweight, overweight and obesity in midlife increase dementia risk, and further research evaluating late‐life BMI and dementia is required.
Abstract: The relationship between body mass index (BMI) (in midlife and late-life) and dementia was investigated in meta-analyses of 16 articles reporting on 15 prospective studies. Follow-ups ranged from 3.2 to 36.0 years. Meta-analyses were conducted on samples including 25 624 participants evaluated for Alzheimer's disease (AD), 15 435 participants evaluated for vascular dementia (VaD) and 30 470 followed for any type of dementia (Any Dementia). Low BMI in midlife was associated with 1.96 [95% confidence interval (CI): 1.32, 2.92] times the risk of developing AD. The pooled relative risks for AD, VaD and Any Dementia for overweight BMI in midlife compared with normal BMI were 1.35 (95% CI:1.19, 1.54), 1.33 (95% CI: 1.02, 1.75) and 1.26 (95% CI: 1.10, 1.44), respectively. The pooled relative risks of AD and Any Dementia for obese BMI in midlife compared to normal BMI were 2.04 (95% CI: 1.59, 2.62) and 1.64 (95% CI: 1.34, 2.00), respectively. Continuous BMI in late-life was not associated with dementia. Small numbers of studies included in pooled analyses reduce generalizability of findings, and emphasize the need for publication of additional findings. We conclude that underweight, overweight and obesity in midlife increase dementia risk. Further research evaluating late-life BMI and dementia is required.

Journal ArticleDOI
TL;DR: There is large variation in the reporting of adherence and the association of adherence with outcomes, and a lack of agreement about how best to measure adherence is likely to contribute to the variation in findings.
Abstract: Background: As the popularity of e-therapies grows, so too has the body of literature supporting their effectiveness. However, these interventions are often plagued by high attrition rates and varying levels of user adherence. Understanding the role of adherence may be crucial to understanding how program usage influences the effectiveness of e-therapy interventions. Objective: The aim of this study was to systematically review the e-therapy literature to (1) describe the methods used to assess adherence and (2) evaluate the association of adherence with outcome of these interventions. Methods: A systematic review of e-therapy interventions was conducted across disease states and behavioral targets. Data were collected on adherence measures, outcomes, and analyses exploring the relationship between adherence measures and outcomes. Results: Of 69 studies that reported an adherence measure, only 33 (48%) examined the relationship between adherence and outcomes. The number of logins was the most commonly reported measure of adherence, followed by the number of modules completed. The heterogeneity of adherence and outcome measures limited analysis. However, logins appeared to be the measure of adherence most consistently related to outcomes in physical health interventions, while module completion was found to be most related to outcomes in psychological health interventions. Conclusions: There is large variation in the reporting of adherence and the association of adherence with outcomes. A lack of agreement about how best to measure adherence is likely to contribute to the variation in findings. Physical and psychological outcomes seem influenced by different types of adherence. A composite measure encompassing time online, activity completion, and active engagements with the intervention may be the best measure of adherence. Further research is required to establish a consensus for measuring adherence and to understand the role of adherence in influencing outcomes.

Journal ArticleDOI
17 Mar 2011-Nature
TL;DR: Findings reveal a miRNA-independent cell survival function for DICER1 involving retrotransposon transcript degradation, show that Alu RNA can directly cause human pathology, and identify new targets for a major cause of blindness.
Abstract: Geographic atrophy (GA), an untreatable advanced form of age-related macular degeneration, results from retinal pigmented epithelium (RPE) cell degeneration. Here we show that the microRNA (miRNA)-processing enzyme DICER1 is reduced in the RPE of humans with GA, and that conditional ablation of Dicer1, but not seven other miRNA-processing enzymes, induces RPE degeneration in mice. DICER1 knockdown induces accumulation of Alu RNA in human RPE cells and Alu-like B1 and B2 RNAs in mouse RPE. Alu RNA is increased in the RPE of humans with GA, and this pathogenic RNA induces human RPE cytotoxicity and RPE degeneration in mice. Antisense oligonucleotides targeting Alu/B1/B2 RNAs prevent DICER1 depletion-induced RPE degeneration despite global miRNA downregulation. DICER1 degrades Alu RNA, and this digested Alu RNA cannot induce RPE degeneration in mice. These findings reveal a miRNA-independent cell survival function for DICER1 involving retrotransposon transcript degradation, show that Alu RNA can directly cause human pathology, and identify new targets for a major cause of blindness.


Journal ArticleDOI
TL;DR: This review discusses the strategies to increase photosynthesis that are being proposed by the wheat yield consortium in order to increase wheat yields, and selection for photosynthetic capacity and efficiency is discussed.
Abstract: Past increases in yield potential of wheat have largely resulted from improvements in harvest index rather than increased biomass. Further large increases in harvest index are unlikely, but an opportunity exists for increasing productive biomass and harvestable grain. Photosynthetic capacity and efficiency are bottlenecks to raising productivity and there is strong evidence that increasing photosynthesis will increase crop yields provided that other constraints do not become limiting. Even small increases in the rate of net photosynthesis can translate into large increases in biomass and hence yield, since carbon assimilation is integrated over the entire growing season and crop canopy. This review discusses the strategies to increase photosynthesis that are being proposed by the wheat yield consortium in order to increase wheat yields. These include: selection for photosynthetic capacity and efficiency, increasing ear photosynthesis, optimizing canopy photosynthesis, introducing chloroplast CO2 pumps, increasing RuBP regeneration, improving the thermal stability of Rubisco activase, and replacing wheat Rubisco with that from other species with different kinetic properties.

Journal ArticleDOI
TL;DR: In this paper, a three-valued semantics (with truth values true, false, inconclusive) is introduced as an adequate interpretation as to whether a partial observation of a running system meets an LTL or TLTL property.
Abstract: This article studies runtime verification of properties expressed either in lineartime temporal logic (LTL) or timed lineartime temporal logic (TLTL). It classifies runtime verification in identifying its distinguishing features to model checking and testing, respectively. It introduces a three-valued semantics (with truth values true, false, inconclusive) as an adequate interpretation as to whether a partial observation of a running system meets an LTL or TLTL property.For LTL, a conceptually simple monitor generation procedure is given, which is optimal in two respects: First, the size of the generated deterministic monitor is minimal, and, second, the monitor identifies a continuously monitored trace as either satisfying or falsifying a property as early as possible. The feasibility of the developed methodology is demontrated using a collection of real-world temporal logic specifications. Moreover, the presented approach is related to the properties monitorable in general and is compared to existing concepts in the literature. It is shown that the set of monitorable properties does not only encompass the safety and cosafety properties but is strictly larger.For TLTL, the same road map is followed by first defining a three-valued semantics. The corresponding construction of a timed monitor is more involved, yet, as shown, possible.

Journal ArticleDOI
TL;DR: It is suggested that the Millennium Development Goals need to be reframed in such a planetary stewardship context combined with a call for a new social contract on global sustainability.
Abstract: Humanity has emerged as a major force in the operation of the biosphere, with a significant imprint on the Earth System, challenging social–ecological resilience. This new situation calls for a fundamental shift in perspectives, world views, and institutions. Human development and progress must be reconnected to the capacity of the biosphere and essential ecosystem services to be sustained. Governance challenges include a highly interconnected and faster world, cascading social–ecological interactions and planetary boundaries that create vulnerabilities but also opportunities for social–ecological change and transformation. Tipping points and thresholds highlight the importance of understanding and managing resilience. New modes of flexible governance are emerging. A central challenge is to reconnect these efforts to the changing preconditions for societal development as active stewards of the Earth System. We suggest that the Millennium Development Goals need to be reframed in such a planetary stewardship context combined with a call for a new social contract on global sustainability. The ongoing mind shift in human relations with Earth and its boundaries provides exciting opportunities for societal development in collaboration with the biosphere—a global sustainability agenda for humanity.

Journal ArticleDOI
TL;DR: A signaling network involving autocrine TGF-β signaling, ZEB transcription factors, and the miR-200 family regulates interconversion between epithelial and mesenchymal states.
Abstract: Epithelial-mesenchymal transition (EMT) is a form of cellular plasticity that is critical for embryonic development and tumor metastasis. A double-negative feedback loop involving the miR-200 family and ZEB (zinc finger E-box-binding homeobox) transcription factors has been postulated to control the balance between epithelial and mesenchymal states. Here we demonstrate using the epithelial Madin Darby canine kidney cell line model that, although manipulation of the ZEB/miR-200 balance is able to repeatedly switch cells between epithelial and mesenchymal states, the induction and maintenance of a stable mesenchymal phenotype requires the establishment of autocrine transforming growth factor-β (TGF-β) signaling to drive sustained ZEB expression. Furthermore, we show that prolonged autocrine TGF-β signaling induced reversible DNA methylation of the miR-200 loci with corresponding changes in miR-200 levels. Collectively, these findings demonstrate the existence of an autocrine TGF-β/ZEB/miR-200 signaling network that regulates plasticity between epithelial and mesenchymal states. We find a strong correlation between ZEBs and TGF-β and negative correlations between miR-200 and TGF-β and between miR-200 and ZEBs, in invasive ductal carcinomas, consistent with an autocrine TGF-β/ZEB/miR-200 signaling network being active in breast cancers.

Journal ArticleDOI
TL;DR: In this article, the authors presented an updated and improved Mbh-σ diagram containing 64 galaxies for which Mbh measurements (not just upper limits) are available, and showed that the optimal scaling factor f − which brings their virial products in line with the 64 directly measured black hole masses is 2.5.
Abstract: We present an updated and improved Mbh–σ diagram containing 64 galaxies for which Mbh measurements (not just upper limits) are available. Because of new and increased black hole masses at the high-mass end, and a better representation of barred galaxies at the low-mass end, the ‘classical’ (all morphological type) Mbh–σ relation for predicting black hole masses is log (Mbh/M⊙) = (8.13 ± 0.05) + (5.13 ± 0.34)log [σ/200 km s−1], with an rms scatter of 0.43 dex. Modifying the regression analysis to correct for a hitherto overlooked sample bias in which black holes with masses <106 M⊙ are not (yet) detectable, the relation steepens further to give log (Mbh/M⊙) = (8.15 ± 0.06) + (5.95 ± 0.44)log [σ/200 km s−1]. We have also updated the ‘barless’ and ‘elliptical-only’Mbh–σ relations introduced by Graham and Hu in 2008 due to the offset nature of barred galaxies. These relations have a total scatter as low as 0.34 dex and currently define the upper envelope of points in the Mbh–σ diagram. They also have a slope consistent with a value 5, in agreement with the prediction by Silk & Rees based on feedback from massive black holes in bulges built by monolithic collapse. Using updated virial products and velocity dispersions from 28 active galactic nuclei, we determine that the optimal scaling factor f– which brings their virial products in line with the 64 directly measured black hole masses – is 2.8+0.7−0.5. This is roughly half the value reported by Onken et al. and Woo et al., and consequently halves the mass estimates of most high-redshift quasars. Given that barred galaxies are, on average, located ∼0.5 dex below the ‘barless’ and ‘elliptical-only’Mbh–σ relations, we have explored the results after separating the samples into barred and non-barred galaxies, and we have also developed a preliminary corrective term to the velocity dispersion based on bar dynamics. In addition, given the recently recognized coexistence of massive black holes and nuclear star clusters, we present the first ever (Mbh+Mnc)–σ diagram and begin to explore how galaxies shift from their former location in the Mbh–σ diagram.

Journal ArticleDOI
16 Dec 2011-Science
TL;DR: It is argued that Mayr’s formulation has acted to stabilize the dominant evolutionary paradigm against change but may now hamper progress in the biological sciences.
Abstract: Fifty years ago, Ernst Mayr published a hugely influential paper on the nature of causation in biology, in which he distinguished between proximate and ultimate causes. Mayr equated proximate causation with immediate factors (for example, physiology) and ultimate causation with evolutionary explanations (for example, natural selection). He argued that proximate and ultimate causes addressed different questions and were not alternatives. Mayr's account of causation remains widely accepted today, with both positive and negative ramifications. Several current debates in biology (for example, over evolution and development, niche construction, cooperation, and the evolution of language) are linked by a common axis of acceptance/rejection of Mayr's model of causation. We argue that Mayr's formulation has acted to stabilize the dominant evolutionary paradigm against change but may now hamper progress in the biological sciences.

Journal ArticleDOI
TL;DR: In this article, the authors describe emergency care systems and the extent of crowding across 15 countries outside of the United States: Australia, Canada, Denmark, Finland, France, Germany, Hong Kong, India, Iran, Italy, The Netherlands, Saudi Arabia, Catalonia (Spain), Sweden, and the United Kingdom.
Abstract: The maturation of emergency medicine (EM) as a specialty has coincided with dramatic increases in emergency department (ED) visit rates, both in the United States and around the world ED crowding has become a public health problem where periodic supply and demand mismatches in ED and hospital resources cause long waiting times and delays in critical treatments ED crowding has been associated with several negative clinical outcomes, including higher complication rates and mortality This article describes emergency care systems and the extent of crowding across 15 countries outside of the United States: Australia, Canada, Denmark, Finland, France, Germany, Hong Kong, India, Iran, Italy, The Netherlands, Saudi Arabia, Catalonia (Spain), Sweden, and the United Kingdom The authors are local emergency care leaders with knowledge of emergency care in their particular countries Where available, data are provided about visit patterns in each country; however, for many of these countries, no national data are available on ED visits rates or crowding For most of the countries included, there is both objective evidence of increases in ED visit rates and ED crowding and also subjective assessments of trends toward higher crowding in the ED ED crowding appears to be worsening in many countries despite the presence of universal health coverage Scandinavian countries with robust systems to manage acute care outside the ED do not report crowding is a major problem The main cause for crowding identified by many authors is the boarding of admitted patients, similar to the United States Many hospitals in these countries have implemented operational interventions to mitigate crowding in the ED, and some countries have imposed strict limits on ED length of stay (LOS), while others have no clear plan to mitigate crowding An understanding of the causes and potential solutions implemented in these countries can provide a lens into how to mitigate ED crowding in the United States through health policy interventions and hospital operational changes

Proceedings ArticleDOI
06 Nov 2011
TL;DR: A simple modification to localize the soft-assignment coding is proposed, which surprisingly achieves comparable or even better performance than existing sparse or local coding schemes while maintaining its computational advantage.
Abstract: In object recognition, soft-assignment coding enjoys computational efficiency and conceptual simplicity. However, its classification performance is inferior to the newly developed sparse or local coding schemes. It would be highly desirable if its classification performance could become comparable to the state-of-the-art, leading to a coding scheme which perfectly combines computational efficiency and classification performance. To achieve this, we revisit soft-assignment coding from two key aspects: classification performance and probabilistic interpretation. For the first aspect, we argue that the inferiority of soft-assignment coding is due to its neglect of the underlying manifold structure of local features. To remedy this, we propose a simple modification to localize the soft-assignment coding, which surprisingly achieves comparable or even better performance than existing sparse or local coding schemes while maintaining its computational advantage. For the second aspect, based on our probabilistic interpretation of the soft-assignment coding, we give a probabilistic explanation to the magic max-pooling operation, which has successfully been used by sparse or local coding schemes but still poorly understood. This probability explanation motivates us to develop a new mix-order max-pooling operation which further improves the classification performance of the proposed coding scheme. As experimentally demonstrated, the localized soft-assignment coding achieves the state-of-the-art classification performance with the highest computational efficiency among the existing coding schemes.

Journal ArticleDOI
TL;DR: A SAL1-PAP retrograde pathway that can alter nuclear gene expression during HL and drought stress is proposed and it is shown that PAP is a primary in vivo substrate.
Abstract: Compartmentation of the eukaryotic cell requires a complex set of subcellular messages, including multiple retrograde signals from the chloroplast and mitochondria to the nucleus, to regulate gene expression. Here, we propose that one such signal is a phosphonucleotide (3'-phosphoadenosine 5'-phosphate [PAP]), which accumulates in Arabidopsis thaliana in response to drought and high light (HL) stress and that the enzyme SAL1 regulates its levels by dephosphorylating PAP to AMP. SAL1 accumulates in chloroplasts and mitochondria but not in the cytosol. sal1 mutants accumulate 20-fold more PAP without a marked change in inositol phosphate levels, demonstrating that PAP is a primary in vivo substrate. Significantly, transgenic targeting of SAL1 to either the nucleus or chloroplast of sal1 mutants lowers the total PAP levels and expression of the HL-inducible ASCORBATE PEROXIDASE2 gene. This indicates that PAP must be able to move between cellular compartments. The mode of action for PAP could be inhibition of 5' to 3' exoribonucleases (XRNs), as SAL1 and the nuclear XRNs modulate the expression of a similar subset of HL and drought-inducible genes, sal1 mutants accumulate XRN substrates, and PAP can inhibit yeast (Saccharomyces cerevisiae) XRNs. We propose a SAL1-PAP retrograde pathway that can alter nuclear gene expression during HL and drought stress.