scispace - formally typeset
Search or ask a question
Institution

Australian National University

EducationCanberra, Australian Capital Territory, Australia
About: Australian National University is a education organization based out in Canberra, Australian Capital Territory, Australia. It is known for research contribution in the topics: Population & Galaxy. The organization has 34419 authors who have published 109261 publications receiving 4315448 citations. The organization is also known as: The Australian National University & ANU.
Topics: Population, Galaxy, Stars, Zircon, Politics


Papers
More filters
Journal ArticleDOI
13 Dec 2007-Nature
TL;DR: It is shown that the halo is indeed clearly divisible into two broadly overlapping structural components—an inner and an outer halo—that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium).
Abstract: The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, and this information can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components—an inner and an outer halo—that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). The inner halo has a modest net prograde rotation, whereas the outer halo exhibits a net retrograde rotation and a peak metallicity one-third that of the inner halo. These properties indicate that the individual halo components probably formed in fundamentally different ways, through successive dissipational (inner) and dissipationless (outer) mergers and tidal disruption of proto-Galactic clumps. The outer region of the Milky Way beyond the galactic disk, known as the halo, was long thought of as a homogenous entity, made up of ancient stars. But recent analysis of small numbers of objects within the halo suggests that they do not comprise a single population. Based on spectroscopic data from more than 20,000 stars, the halo is shown to consist of two broadly overlapping structural components — an inner halo that rotates slowly in the same direction as the Milky Way as a whole; and an outer halo rotating in the opposite direction. The outer halo has relatively low abundances of elements heavier than helium. The inner halo may have formed by a succession of dissipational mergers, and the outer halo through dissipationless processes and the tidal disruption of proto-galactic clumps. The halo of the Milky Way is clearly divisible into two broadly overlapping structural components, an inner and an outer halo. While the inner halo has a modest net prograde rotation, the outer halo exhibits a net retrograde rotation and a peak metallicity one third that of the inner.

704 citations

Journal ArticleDOI
TL;DR: In this paper, a metasedimentary and a meta-igneous quartz-feldspar granulite from the Val Sesia and Val Mastallone area of the Ivrea Zone (Southern Alps) are compared with respect to crystal morphology and U/Pb ages.
Abstract: Zircons from a metasedimentary and a meta-igneous quartz-feldspar granulite from the Val Sesia and Val Mastallone area of the Ivrea Zone (Southern Alps) differ in their response to granulite facies metamorphism with respect to crystal morphology and U/Pb ages. Detrital zircons in the metasediment developed an isometric overgrowth by the addition of Zr derived mainly from co-existing minerals, most probably biotite, decomposing during anatectic melting. The overgrowth started in the pelitic layer of the metasediment in the Late Carboniferous at approximately 296 Ma, significantly earlier than in the adjacent psammitic layer where it started only at 261 ± 4 Ma (95% confidence level). These ages are ascribed to the differential initiation of anatexis in the two layers. The delay of melting in the psammitic layer was probably due to the different position and less steep slope of its solidus in P-T-space, as compared to the solidus in the pelitic layer. Accordingly, the melting in the psammitic layer at 261 Ma was initiated by a thermal pulse and/or by a decompression event. Decompression melting is supported by a characteristic shell morphology of the zircon overgrowth in the psammitic layer, which might have grown under shear movements during high-temperature extensional faulting. The typically magmatic zircon population of the meta-igneous granulite crystallized at 355 ± 6 Ma (95% confidence level). The morphology of the zircons and the chemistry of the rock suggest that the magma was calcalkaline. A minor subpopulation of crystals is morphologically similar to the zircons in the pelitic layer of the metasediment. This points to the admixture of a minor sediment component and, thus, to a largely volcaniclastic origin of the protolith. In contrast to the detrital zircons in the metasediment, the magmatic zircons show rare and little overgrowth and, instead, have been strongly resorbed by anatectic melt. In addition, they became partially recrystallized and the rejuvenated ages from the most thoroughly recrystallized domains indicate that the rock was subject to prograde metamorphism after 279 Ma. This may correspond to the regional temperature increase prior to the climax of metamorphism or to a local thermal pulse due to nearby mafic intrusions. An Upper Triassic event at 226 ± 5 Ma is reflected by distinct peripheral zones in the overgrowths of some zircons in the metapelite. These are interpreted as a second metamorphic pulse, possibly induced by the infiltration of fluids.

703 citations

Journal ArticleDOI
TL;DR: Clinicians are provided with evidence to recommend that patients obtain both aerobic and resistance exercise of at least moderate intensity on as many days of the week as feasible, in line with current exercise guidelines, to improve cognitive function.
Abstract: Background Physical exercise is seen as a promising intervention to prevent or delay cognitive decline in individuals aged 50 years and older, yet the evidence from reviews is not conclusive. Objectives To determine if physical exercise is effective in improving cognitive function in this population. Design Systematic review with multilevel meta-analysis. Data sources Electronic databases Medline (PubMed), EMBASE (Scopus), PsychINFO and CENTRAL (Cochrane) from inception to November 2016. Eligibility criteria Randomised controlled trials of physical exercise interventions in community-dwelling adults older than 50 years, with an outcome measure of cognitive function. Results The search returned 12 820 records, of which 39 studies were included in the systematic review. Analysis of 333 dependent effect sizes from 36 studies showed that physical exercise improved cognitive function (0.29; 95% CI 0.17 to 0.41; p Conclusions Physical exercise improved cognitive function in the over 50s, regardless of the cognitive status of participants. To improve cognitive function, this meta-analysis provides clinicians with evidence to recommend that patients obtain both aerobic and resistance exercise of at least moderate intensity on as many days of the week as feasible, in line with current exercise guidelines.

703 citations

Journal ArticleDOI
TL;DR: Self-embarrassment and expectations that others would respond negatively predicted the likelihood of help-seeking from professional sources, and interventions should focus on minimizing expectations of negative responses from others and negative self-responses to help- seeking, and should target younger people.
Abstract: Objective: Research has shown that people are reluctant to seek professional help for depression, especially from mental health professionals. This may be because of the impact of stigma which can ...

703 citations

Journal ArticleDOI
TL;DR: This work explores an array of prospective redesigns of plant systems at various scales aimed at increasing crop yields through improved photosynthetic efficiency and performance, and suggests some proposed redesigns are certain to face obstacles that will require alternate routes.
Abstract: The world’s crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production.

700 citations


Authors

Showing all 34925 results

NameH-indexPapersCitations
Cyrus Cooper2041869206782
Nicholas G. Martin1921770161952
David R. Williams1782034138789
Krzysztof Matyjaszewski1691431128585
Anton M. Koekemoer1681127106796
Robert G. Webster15884390776
Ashok Kumar1515654164086
Andrew White1491494113874
Bernhard Schölkopf1481092149492
Paul Mitchell146137895659
Liming Dai14178182937
Thomas J. Smith1401775113919
Michael J. Keating140116976353
Joss Bland-Hawthorn136111477593
Harold A. Mooney135450100404
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

92% related

University College London
210.6K papers, 9.8M citations

91% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

University of Edinburgh
151.6K papers, 6.6M citations

91% related

University of Cambridge
282.2K papers, 14.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023280
2022773
20215,261
20205,464
20195,109
20184,825