scispace - formally typeset
Search or ask a question
Institution

Australian National University

EducationCanberra, Australian Capital Territory, Australia
About: Australian National University is a education organization based out in Canberra, Australian Capital Territory, Australia. It is known for research contribution in the topics: Population & Galaxy. The organization has 34419 authors who have published 109261 publications receiving 4315448 citations. The organization is also known as: The Australian National University & ANU.
Topics: Population, Galaxy, Stars, Zircon, Politics


Papers
More filters
Journal ArticleDOI
08 Mar 2001-Nature
TL;DR: A precise measurement of the clustering of superclusters of galaxies using the redshifts of more than 141,000 galaxies from the 2dF galaxy redshift survey is reported, which favours a low-density Universe with Ω ≈ 0.3.
Abstract: The large-scale structure in the distribution of galaxies is thought to arise from the gravitational instability of small fluctuations in the initial density field of the Universe. A key test of this hypothesis is that forming superclusters of galaxies should generate a systematic infall of other galaxies. This would be evident in the pattern of recessional velocities, causing an anisotropy in the inferred spatial clustering of galaxies. Here we report a precise measurement of this clustering, using the redshifts of more than 141,000 galaxies from the two-degree-field (2dF) galaxy redshift survey. We determine the parameter β = Ω ^(0.6)/b = 0.43 ± 0.07, where Ω is the total mass-density parameter of the Universe and b is a measure of the 'bias' of the luminous galaxies in the survey. (Bias is the difference between the clustering of visible galaxies and of the total mass, most of which is dark.) Combined with the anisotropy of the cosmic microwave background, our results favour a low-density Universe with Ω ≈ 0.3.

640 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community.
Abstract: Accurate assessment of anthropogenic carbon dioxide (CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO 2 emissions from fossil fuel combustion and cement production (E FF ) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E LUC ), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth (G ATM ) is computed from the annual changes in concentration. The mean ocean CO 2 sink (S OCEAN ) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink (S LAND ) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2 , and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), E FF was 8.9 ± 0.4 GtC yr −1 , E LUC 0.9 ± 0.5 GtC yr −1 , G ATM 4.3 ± 0.1 GtC yr −1 , S OCEAN 2.6 ± 0.5 GtC yr −1 , and S LAND 2.9 ± 0.8 GtC yr −1 . For year 2013 alone, E FF grew to 9.9 ± 0.5 GtC yr −1 , 2.3% above 2012, continuing the growth trend in these emissions, E LUC was 0.9 ± 0.5 GtC yr −1 , G ATM was 5.4 ± 0.2 GtC yr −1 , S OCEAN was 2.9 ± 0.5 GtC yr −1 and S LAND was 2.5 ± 0.9 GtC yr −1 . G ATM was high in 2013, reflecting a steady increase in E FF and smaller and opposite changes between S OCEAN and S LAND compared to the past decade (2004–2013). The global atmospheric CO 2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that E FF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO 2 yr −1 ), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of E FF and assumed constant E LUC for 2014, cumulative emissions of CO 2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO 2 ) for 1870–2014, about 75% from EF FF and 25% from E LUC . This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quere et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).

639 citations

Journal ArticleDOI
TL;DR: It is concluded that underweight, overweight and obesity in midlife increase dementia risk, and further research evaluating late‐life BMI and dementia is required.
Abstract: The relationship between body mass index (BMI) (in midlife and late-life) and dementia was investigated in meta-analyses of 16 articles reporting on 15 prospective studies. Follow-ups ranged from 3.2 to 36.0 years. Meta-analyses were conducted on samples including 25 624 participants evaluated for Alzheimer's disease (AD), 15 435 participants evaluated for vascular dementia (VaD) and 30 470 followed for any type of dementia (Any Dementia). Low BMI in midlife was associated with 1.96 [95% confidence interval (CI): 1.32, 2.92] times the risk of developing AD. The pooled relative risks for AD, VaD and Any Dementia for overweight BMI in midlife compared with normal BMI were 1.35 (95% CI:1.19, 1.54), 1.33 (95% CI: 1.02, 1.75) and 1.26 (95% CI: 1.10, 1.44), respectively. The pooled relative risks of AD and Any Dementia for obese BMI in midlife compared to normal BMI were 2.04 (95% CI: 1.59, 2.62) and 1.64 (95% CI: 1.34, 2.00), respectively. Continuous BMI in late-life was not associated with dementia. Small numbers of studies included in pooled analyses reduce generalizability of findings, and emphasize the need for publication of additional findings. We conclude that underweight, overweight and obesity in midlife increase dementia risk. Further research evaluating late-life BMI and dementia is required.

638 citations

Journal ArticleDOI
TL;DR: A guiding framework is presented that aims to assist modellers and model users in the choice of an appropriate modelling approach for their integrated assessment applications and that enables more effective learning in interdisciplinary settings.
Abstract: The design and implementation of effective environmental policies need to be informed by a holistic understanding of the system processes (biophysical, social and economic), their complex interactions, and how they respond to various changes. Models, integrating different system processes into a unified framework, are seen as useful tools to help analyse alternatives with stakeholders, assess their outcomes, and communicate results in a transparent way. This paper reviews five common approaches or model types that have the capacity to integrate knowledge by developing models that can accommodate multiple issues, values, scales and uncertainty considerations, as well as facilitate stakeholder engagement. The approaches considered are: systems dynamics, Bayesian networks, coupled component models, agent-based models and knowledge-based models (also referred to as expert systems). We start by discussing several considerations in model development, such as the purpose of model building, the availability of qualitative versus quantitative data for model specification, the level of spatio-temporal detail required, and treatment of uncertainty. These considerations and a review of applications are then used to develop a framework that aims to assist modellers and model users in the choice of an appropriate modelling approach for their integrated assessment applications and that enables more effective learning in interdisciplinary settings. We review five common integrated modelling approaches.Model choice considers purpose, data type, scale and uncertainty treatment.We present a guiding framework for selecting the most appropriate approach.

637 citations

Journal ArticleDOI
26 Jan 2006-Nature
TL;DR: The detection of a cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory, and is suggested to name OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.
Abstract: Over 170 extrasolar planets have so far been discovered, with a wide range of masses and orbital periods, but until last July no planet of Neptune's mass or less had been detected any more than 0.15 astronomical units (AU) from a normal star. (That's close — Earth is one AU from the Sun). On 11 July 2005 the OGLE Early Warning System recorded a notable event: gravitational lensing of light from a distant object by a foreground star revealed a small planet of about 5.5 Earth masses, orbiting at about 2.6 AU from the foreground star. This is the lowest known mass for an extrasolar planet orbiting a main sequence star, and its detection suggests that cool, sub-Neptune mass planets are more common than gas giants, as predicted by the favoured core accretion theory of planet formation. In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass (M⊕) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (au), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars1,2,3,4. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 au from normal stars. Here we report the discovery of a M⊕ planetary companion at a separation of au from a M⊙ M-dwarf star, where M⊙ refers to a solar mass. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.

636 citations


Authors

Showing all 34925 results

NameH-indexPapersCitations
Cyrus Cooper2041869206782
Nicholas G. Martin1921770161952
David R. Williams1782034138789
Krzysztof Matyjaszewski1691431128585
Anton M. Koekemoer1681127106796
Robert G. Webster15884390776
Ashok Kumar1515654164086
Andrew White1491494113874
Bernhard Schölkopf1481092149492
Paul Mitchell146137895659
Liming Dai14178182937
Thomas J. Smith1401775113919
Michael J. Keating140116976353
Joss Bland-Hawthorn136111477593
Harold A. Mooney135450100404
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

92% related

University College London
210.6K papers, 9.8M citations

91% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

University of Edinburgh
151.6K papers, 6.6M citations

91% related

University of Cambridge
282.2K papers, 14.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023280
2022773
20215,261
20205,464
20195,109
20184,825