scispace - formally typeset
Search or ask a question
Institution

Australian National University

EducationCanberra, Australian Capital Territory, Australia
About: Australian National University is a education organization based out in Canberra, Australian Capital Territory, Australia. It is known for research contribution in the topics: Population & Galaxy. The organization has 34419 authors who have published 109261 publications receiving 4315448 citations. The organization is also known as: The Australian National University & ANU.
Topics: Population, Galaxy, Stars, Zircon, Politics


Papers
More filters
Journal ArticleDOI
TL;DR: This review highlights the opportunities that development of arid conditions provides for rapid and diverse evolutionary radiations, and re-enforces the emerging view that Pleistocene environmental change can have diverse impacts on genetic structure and diversity in different biomes.
Abstract: The integration of phylogenetics, phylogeography and palaeoenvironmental studies is providing major insights into the historical forces that have shaped the Earth's biomes. Yet our present view is biased towards arctic and temperate/tropical forest regions, with very little focus on the extensive arid regions of the planet. The Australian arid zone is one of the largest desert landform systems in the world, with a unique, diverse and relatively well-studied biota. With foci on palaeoenvironmental and molecular data, we here review what is known about the assembly and maintenance of this biome in the context of its physical history, and in comparison with other mesic biomes. Aridification of Australia began in the Mid-Miocene, around 15 million years, but fully arid landforms in central Australia appeared much later, around 1-4 million years. Dated molecular phylogenies of diverse taxa show the deepest divergences of arid-adapted taxa from the Mid-Miocene, consistent with the onset of desiccation. There is evidence of arid-adapted taxa evolving from mesic-adapted ancestors, and also of speciation within the arid zone. There is no evidence for an increase in speciation rate during the Pleistocene, and most arid-zone species lineages date to the Pliocene or earlier. The last 0.8 million years have seen major fluctuations of the arid zone, with large areas covered by mobile sand dunes during glacial maxima. Some large, vagile taxa show patterns of recent expansion and migration throughout the arid zone, in parallel with the ice sheet-imposed range shifts in Northern Hemisphere taxa. Yet other taxa show high lineage diversity and strong phylogeographical structure, indicating persistence in multiple localised refugia over several glacial maxima. Similar to the Northern Hemisphere, Pleistocene range shifts have produced suture zones, creating the opportunity for diversification and speciation through hybridisation, polyploidy and parthenogenesis. This review highlights the opportunities that development of arid conditions provides for rapid and diverse evolutionary radiations, and re-enforces the emerging view that Pleistocene environmental change can have diverse impacts on genetic structure and diversity in different biomes. There is a clear need for more detailed and targeted phylogeographical studies of Australia's arid biota and we suggest a framework and a set of a priori hypotheses by which to proceed.

595 citations

Journal ArticleDOI
TL;DR: In this paper, the presence of zircon and rutile in the vein is another example of high field strength element (HFSE) mobility over short distances in aqueous fluids at eclogite-facies conditions.

595 citations

Journal ArticleDOI
TL;DR: Understanding when the first SDM software package (bioclim) was developed and how a broad range of applications using the package was explored within the first 8 years following its release is clarified.
Abstract: Aim Interest in species distribution models (SDMs) and related niche studies has increased dramatically in recent years, with several books and reviews being prepared since 2000. The earliest SDM studies are dealt with only briefly even in the books. Consequently, many researchers are unaware of when the first SDM software package (bioclim) was developed and how a broad range of applications using the package was explored within the first 8 years following its release. The purpose of this study is to clarify these early developments and initial applications, as well as to highlight bioclim's continuing relevance to current studies. Location Mainly Australia and New Zealand, but also some global applications. Methods We outline the development of the bioclim package, early applications (1984–1991) and its current relevance. Results bioclim was the first SDM package to be widely used. Early applications explored many of the possible uses of SDMs in conservation biogeography, such as quantifying the environmental niche of species, identifying areas where a species might be invasive, assisting conservation planning and assessing the likely impacts of climate change on species distributions. Main conclusions Understanding this pioneering work is worthwhile as bioclim was for many years one of the leading SDM packages and remains widely used. Climate interpolation methods developed for bioclim were used to create the WorldClim database, the most common source of climate data for SDM studies, and bioclim variables are used in about 76% of recent published MaxEnt analyses of terrestrial ecosystems. Also, some of the bioclim studies from the late 1980s, such as measuring niche (both realized and fundamental) and assessing possible impacts of climate change, are still highly relevant to key conservation biogeography issues.

594 citations

Journal ArticleDOI
14 Apr 2005-Nature
TL;DR: The discovery of HE1327–2326 is reported, a subgiant or main-sequence star with an iron abundance about a factor of two lower than that of HE0107–5240, suggesting a similar origin of the abundance patterns.
Abstract: When HE010715240 was discovered in 2002 it was the most metal-deficient star known. (Astrophysicists use the term ‘metal’ for all elements bar hydrogen and helium.) It had an iron abundance 20 times lower than previously recorded, suggesting that here was a relic, a star formed soon after the Big Bang. Now a second ‘unevolved’ star has been discovered: HE132712326, with an iron abundance about half that of HE010715240. One low-metal star was a novelty; two is a new class of stellar object. The similarities (in C and N content) and contrasts (in Li and Sr) between these two stellar relics present challenges to theories of star formation and may lead to new discoveries about how the elements were synthesized in the first stars. The chemically most primitive stars provide constraints on the nature of the first stellar objects that formed in the Universe; elements other than hydrogen, helium and traces of lithium present within these objects were generated by nucleosynthesis in the very first stars. The relative abundances of elements in the surviving primitive stars reflect the masses of the first stars, because the pathways of nucleosynthesis are quite sensitive to stellar masses. Several models1,2,3,4,5 have been suggested to explain the origin of the abundance pattern of the giant star HE0107–5240, which hitherto exhibited the highest deficiency of heavy elements known1,6. Here we report the discovery of HE1327–2326, a subgiant or main-sequence star with an iron abundance about a factor of two lower than that of HE0107–5240. Both stars show extreme overabundances of carbon and nitrogen with respect to iron, suggesting a similar origin of the abundance patterns. The unexpectedly low Li and high Sr abundances of HE1327–2326, however, challenge existing theoretical understanding: no model predicts the high Sr abundance or provides a Li depletion mechanism consistent with data available for the most metal-poor stars.

593 citations

Journal ArticleDOI
TL;DR: Diversity Arrays Technology can be effectively applied to genetic mapping and diversity analyses of barley and is highlighted as a generic technique for genome profiling in the context of molecular breeding and genomics.
Abstract: Diversity Arrays Technology (DArT) can detect and type DNA variation at several hundred genomic loci in parallel without relying on sequence information. Here we show that it can be effectively applied to genetic mapping and diversity analyses of barley, a species with a 5,000-Mbp genome. We tested several complexity reduction methods and selected two that generated the most polymorphic genomic representations. Arrays containing individual fragments from these representations generated DArT fingerprints with a genotype call rate of 98.0% and a scoring reproducibility of at least 99.8%. The fingerprints grouped barley lines according to known genetic relationships. To validate the Mendelian behavior of DArT markers, we constructed a genetic map for a cross between cultivars Steptoe and Morex. Nearly all polymorphic array features could be incorporated into one of seven linkage groups (98.8%). The resulting map comprised ≈385 unique DArT markers and spanned 1,137 centimorgans. A comparison with the restriction fragment length polymorphism-based framework map indicated that the quality of the DArT map was equivalent, if not superior, to that of the framework map. These results highlight the potential of DArT as a generic technique for genome profiling in the context of molecular breeding and genomics.

593 citations


Authors

Showing all 34925 results

NameH-indexPapersCitations
Cyrus Cooper2041869206782
Nicholas G. Martin1921770161952
David R. Williams1782034138789
Krzysztof Matyjaszewski1691431128585
Anton M. Koekemoer1681127106796
Robert G. Webster15884390776
Ashok Kumar1515654164086
Andrew White1491494113874
Bernhard Schölkopf1481092149492
Paul Mitchell146137895659
Liming Dai14178182937
Thomas J. Smith1401775113919
Michael J. Keating140116976353
Joss Bland-Hawthorn136111477593
Harold A. Mooney135450100404
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

92% related

University College London
210.6K papers, 9.8M citations

91% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

University of Edinburgh
151.6K papers, 6.6M citations

91% related

University of Cambridge
282.2K papers, 14.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023280
2022773
20215,261
20205,464
20195,109
20184,825