scispace - formally typeset
Search or ask a question
Institution

Australian National University

EducationCanberra, Australian Capital Territory, Australia
About: Australian National University is a education organization based out in Canberra, Australian Capital Territory, Australia. It is known for research contribution in the topics: Population & Galaxy. The organization has 34419 authors who have published 109261 publications receiving 4315448 citations. The organization is also known as: The Australian National University & ANU.
Topics: Population, Galaxy, Stars, Zircon, Politics


Papers
More filters
Journal ArticleDOI
01 May 2002-Nature
TL;DR: The formation of bright solitons of 7Li atoms in a quasi-one-dimensional optical trap is reported, by magnetically tuning the interactions in a stable Bose–Einstein condensate from repulsive to attractive.
Abstract: Attraction between the atoms of a Bose–Einstein condensate renders it unstable to collapse, although a condensate with a limited number of atoms1 can be stabilized2 by confinement in an atom trap. However, beyond this number the condensate collapses3,4,5. Condensates constrained to one-dimensional motion with attractive interactions are predicted to form stable solitons, in which the attractive forces exactly compensate for wave-packet dispersion1. Here we report the formation of bright solitons of 7Li atoms in a quasi-one-dimensional optical trap, by magnetically tuning the interactions in a stable Bose–Einstein condensate from repulsive to attractive. The solitons are set in motion by offsetting the optical potential, and are observed to propagate in the potential for many oscillatory cycles without spreading. We observe a soliton train, containing many solitons; repulsive interactions between neighbouring solitons are inferred from their motion.

1,402 citations

Journal ArticleDOI
TL;DR: Results indicate that IL-5 and eosinophils are central mediators in the pathogenesis of allergic lung disease.
Abstract: Airways inflammation is thought to play a central role in the pathogenesis of asthma. However, the precise role that individual inflammatory cells and mediators play in the development of airways hyperreactivity and the morphological changes of the lung during allergic pulmonary inflammation is unknown. In this investigation we have used a mouse model of allergic pulmonary inflammation and interleukin (IL) 5-deficient mice to establish the essential role of this cytokine and eosinophils in the initiation of aeroallergen-induced lung damage and the development of airways hyperreactivity. Sensitization and aerosol challenge of mice with ovalbumin results in airways eosinophilia and extensive lung damage analogous to that seen in asthma. Aeroallergen-challenged mice also display airways hyperreactivity to beta-methacholine. In IL-5-deficient mice, the eosinophilia, lung damage, and airways hyperreactivity normally resulting from aeroallergen challenge were abolished. Reconstitution of IL-5 production with recombinant vaccinia viruses engineered to express this factor completely restored aeroallergen-induced eosinophilia and airways dysfunction. These results indicate that IL-5 and eosinophils are central mediators in the pathogenesis of allergic lung disease.

1,387 citations

Journal ArticleDOI
TL;DR: This target article summarizes decades of cross-linguistic work by typologists and descriptive linguists, showing just how few and unprofound the universal characteristics of language are, once the authors honestly confront the diversity offered to us by the world's 6,000 to 8,000 languages.
Abstract: Talk of linguistic universals has given cognitive scientists the impression that languages are all built to a common pattern. In fact, there are vanishingly few universals of language in the direct sense that all languages exhibit them. Instead, diversity can be found at almost every level of linguistic organization. This fundamentally changes the object of enquiry from a cognitive science perspective. This target article summarizes decades of cross-linguistic work by typologists and descriptive linguists, showing just how few and unprofound the universal characteristics of language are, once we honestly confront the diversity offered to us by the world's 6,000 to 8,000 languages. After surveying the various uses of "universal," we illustrate the ways languages vary radically in sound, meaning, and syntactic organization, and then we examine in more detail the core grammatical machinery of recursion, constituency, and grammatical relations. Although there are significant recurrent patterns in organization, these are better explained as stable engineering solutions satisfying multiple design constraints, reflecting both cultural-historical factors and the constraints of human cognition. Linguistic diversity then becomes the crucial datum for cognitive science: we are the only species with a communication system that is fundamentally variable at all levels. Recognizing the true extent of structural diversity in human language opens up exciting new research directions for cognitive scientists, offering thousands of different natural experiments given by different languages, with new opportunities for dialogue with biological paradigms concerned with change and diversity, and confronting us with the extraordinary plasticity of the highest human skills.

1,385 citations

Journal ArticleDOI
Jan Schipper1, Jan Schipper2, Janice Chanson1, Janice Chanson2, Federica Chiozza3, Neil A. Cox1, Neil A. Cox2, Michael R. Hoffmann2, Michael R. Hoffmann1, Vineet Katariya1, John F. Lamoreux1, John F. Lamoreux4, Ana S. L. Rodrigues5, Ana S. L. Rodrigues6, Simon N. Stuart1, Simon N. Stuart2, Helen J. Temple1, Jonathan E. M. Baillie7, Luigi Boitani3, Thomas E. Lacher4, Thomas E. Lacher2, Russell A. Mittermeier, Andrew T. Smith8, Daniel Absolon, John M. Aguiar4, John M. Aguiar2, Giovanni Amori, Noura Bakkour9, Noura Bakkour2, Ricardo Baldi10, Ricardo Baldi11, Richard J. Berridge, Jon Bielby7, Jon Bielby12, Patricia Ann Black13, Julian Blanc, Thomas M. Brooks14, Thomas M. Brooks2, Thomas M. Brooks15, James Burton16, James Burton17, Thomas M. Butynski18, Gianluca Catullo, Roselle Chapman, Zoe Cokeliss7, Ben Collen7, Jim Conroy, Justin Cooke, Gustavo A. B. da Fonseca19, Gustavo A. B. da Fonseca20, Andrew E. Derocher21, Holly T. Dublin, J. W. Duckworth10, Louise H. Emmons22, Richard H. Emslie1, Marco Festa-Bianchet23, Matthew N. Foster, Sabrina Foster24, David L. Garshelis25, C. Cormack Gates26, Mariano Gimenez-Dixon, Susana González, José F. González-Maya, Tatjana C. Good27, Geoffrey Hammerson28, Philip S. Hammond29, D. C. D. Happold30, Meredith Happold30, John Hare, Richard B. Harris31, Clare E. Hawkins15, Clare E. Hawkins32, Mandy Haywood33, Lawrence R. Heaney34, Simon Hedges10, Kristofer M. Helgen22, Craig Hilton-Taylor1, Syed Ainul Hussain35, Nobuo Ishii36, Thomas Jefferson37, Richard K. B. Jenkins38, Charlotte H. Johnston8, Mark Keith39, Jonathan Kingdon40, David Knox2, Kit M. Kovacs41, Kit M. Kovacs42, Penny F. Langhammer8, Kristin Leus43, Rebecca L. Lewison44, Gabriela Lichtenstein, Lloyd F. Lowry45, Zoe Macavoy12, Georgina M. Mace12, David Mallon46, Monica Masi, Meghan W. McKnight, Rodrigo A. Medellín47, Patricia Medici48, G. Mills, Patricia D. Moehlman, Sanjay Molur, Arturo Mora1, Kristin Nowell, John F. Oates49, Wanda Olech, William R.L. Oliver, Monik Oprea22, Bruce D. Patterson34, William F. Perrin37, Beth Polidoro1, Caroline M. Pollock1, Abigail Powel50, Yelizaveta Protas9, Paul A. Racey38, Jim Ragle1, Pavithra Ramani24, Galen B. Rathbun51, Randall R. Reeves, Stephen B. Reilly37, John E. Reynolds52, Carlo Rondinini3, Ruth Grace Rosell-Ambal2, Monica Rulli, Anthony B. Rylands, Simona Savini, Cody J. Schank24, Wes Sechrest24, Caryn Self-Sullivan, Alan Shoemaker1, Claudio Sillero-Zubiri40, Naamal De Silva, David E. Smith24, Chelmala Srinivasulu53, P. J. Stephenson, Nico van Strien54, Bibhab Kumar Talukdar55, Barbara L. Taylor37, Rob Timmins, Diego G. Tirira, Marcelo F. Tognelli11, Marcelo F. Tognelli56, Katerina Tsytsulina, Liza M. Veiga57, Jean-Christophe Vié1, Elizabeth A. Williamson58, Sarah A. Wyatt, Yan Xie, Bruce E. Young28 
International Union for Conservation of Nature and Natural Resources1, Conservation International2, Sapienza University of Rome3, Texas A&M University4, University of Cambridge5, Instituto Superior Técnico6, Zoological Society of London7, Arizona State University8, Columbia University9, Wildlife Conservation Society10, National Scientific and Technical Research Council11, Imperial College London12, National University of Tucumán13, University of the Philippines Los Baños14, University of Tasmania15, Earthwatch Institute16, University of Edinburgh17, Drexel University18, Global Environment Facility19, Universidade Federal de Minas Gerais20, University of Alberta21, Smithsonian Institution22, Université de Sherbrooke23, University of Virginia24, Minnesota Department of Natural Resources25, University of Calgary26, James Cook University27, NatureServe28, University of St Andrews29, Australian National University30, University of Montana31, General Post Office32, University of Otago33, Field Museum of Natural History34, Wildlife Institute of India35, Tokyo Woman's Christian University36, National Oceanic and Atmospheric Administration37, University of Aberdeen38, University of the Witwatersrand39, University of Oxford40, Norwegian Polar Institute41, University Centre in Svalbard42, Copenhagen Zoo43, San Diego State University44, University of Alaska Fairbanks45, Manchester Metropolitan University46, National Autonomous University of Mexico47, University of Kent48, City University of New York49, Victoria University of Wellington50, California Academy of Sciences51, Mote Marine Laboratory52, Osmania University53, White Oak Conservation54, Aaranyak55, University of California, Davis56, Museu Paraense Emílio Goeldi57, University of Stirling58
10 Oct 2008-Science
TL;DR: In this paper, the authors present a comprehensive assessment of the conservation status and distribution of the world's mammals, including marine mammals, using data collected by 1700+ experts, covering all 5487 species.
Abstract: Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action.

1,383 citations

Journal ArticleDOI
TL;DR: The mouse was found to be natively susceptible to Listeria monocytogenes, and its susceptibility was attributed to the capacity of the organism to survive and multiplying in host macrophages, while Histological evidence suggested that acquired resistance was the result of a change occurring in the host's mononuclear phagocytes.
Abstract: The mouse was found to be natively susceptible to Listeria monocytogenes . Its susceptibility was attributed to the capacity of the organism to survive and multiplying in host macrophages. During the first 3 days of a primary infection the bacterial populations of spleen and liver were found to increase at a constant rate. On the 4th day of infection the host became hypersensitive to Listeria antigens and at the same time bacterial growth ceased. A rapid inactivation of the organism ensued. Convalescent mice were resistant to challenge, but no protective factor could be found in their serum. Histological evidence suggested that acquired resistance was the result of a change occurring in the host's mononuclear phagocytes. When challenged in vitro , the macrophages of convalescent mice were found to resist infection with Listeria monocytogenes. Listeria -resistant cells appeared during the course of infection at a time which corresponded with the development of the antibacterial mechanism in the spleen. They persisted for as long as the antibacterial mechanism remained intact in this organ. This period of absolute resistance to Listeria lasted about 3 weeks. Thereafter, the host remained hypersensitive but unable to inactivate a challenge inoculum of Listeria . However, it remained capable of producing an accelerated response to reinfection. This was thought to depend upon an ability to generate a new population of resistant cells from a residuum of specifically sensitized macrophages or macrophage precursors still surviving in the tissues as a result of the immunological activation which occurred during the primary infection.

1,369 citations


Authors

Showing all 34925 results

NameH-indexPapersCitations
Cyrus Cooper2041869206782
Nicholas G. Martin1921770161952
David R. Williams1782034138789
Krzysztof Matyjaszewski1691431128585
Anton M. Koekemoer1681127106796
Robert G. Webster15884390776
Ashok Kumar1515654164086
Andrew White1491494113874
Bernhard Schölkopf1481092149492
Paul Mitchell146137895659
Liming Dai14178182937
Thomas J. Smith1401775113919
Michael J. Keating140116976353
Joss Bland-Hawthorn136111477593
Harold A. Mooney135450100404
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

92% related

University College London
210.6K papers, 9.8M citations

91% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

University of Edinburgh
151.6K papers, 6.6M citations

91% related

University of Cambridge
282.2K papers, 14.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023280
2022773
20215,261
20205,464
20195,109
20184,825