scispace - formally typeset
Search or ask a question
Institution

Australian National University

EducationCanberra, Australian Capital Territory, Australia
About: Australian National University is a education organization based out in Canberra, Australian Capital Territory, Australia. It is known for research contribution in the topics: Population & Galaxy. The organization has 34419 authors who have published 109261 publications receiving 4315448 citations. The organization is also known as: The Australian National University & ANU.


Papers
More filters
Journal ArticleDOI
TL;DR: Although it is known that diarrheal diseases are a major burden in children, this first global and regional estimates of the disease burden of the most important foodborne bacterial, protozoal, and viral diseases demonstrated for the first time the importance of contaminated food as a cause.
Abstract: BACKGROUND: Foodborne diseases are important worldwide, resulting in considerable morbidity and mortality. To our knowledge, we present the first global and regional estimates of the disease burden of the most important foodborne bacterial, protozoal, and viral diseases. METHODS AND FINDINGS: We synthesized data on the number of foodborne illnesses, sequelae, deaths, and Disability Adjusted Life Years (DALYs), for all diseases with sufficient data to support global and regional estimates, by age and region. The data sources included varied by pathogen and included systematic reviews, cohort studies, surveillance studies and other burden of disease assessments. We sought relevant data circa 2010, and included sources from 1990-2012. The number of studies per pathogen ranged from as few as 5 studies for bacterial intoxications through to 494 studies for diarrheal pathogens. To estimate mortality for Mycobacterium bovis infections and morbidity and mortality for invasive non-typhoidal Salmonella enterica infections, we excluded cases attributed to HIV infection. We excluded stillbirths in our estimates. We estimate that the 22 diseases included in our study resulted in two billion (95% uncertainty interval [UI] 1.5-2.9 billion) cases, over one million (95% UI 0.89-1.4 million) deaths, and 78.7 million (95% UI 65.0-97.7 million) DALYs in 2010. To estimate the burden due to contaminated food, we then applied proportions of infections that were estimated to be foodborne from a global expert elicitation. Waterborne transmission of disease was not included. We estimate that 29% (95% UI 23-36%) of cases caused by diseases in our study, or 582 million (95% UI 401-922 million), were transmitted by contaminated food, resulting in 25.2 million (95% UI 17.5-37.0 million) DALYs. Norovirus was the leading cause of foodborne illness causing 125 million (95% UI 70-251 million) cases, while Campylobacter spp. caused 96 million (95% UI 52-177 million) foodborne illnesses. Of all foodborne diseases, diarrheal and invasive infections due to non-typhoidal S. enterica infections resulted in the highest burden, causing 4.07 million (95% UI 2.49-6.27 million) DALYs. Regionally, DALYs per 100,000 population were highest in the African region followed by the South East Asian region. Considerable burden of foodborne disease is borne by children less than five years of age. Major limitations of our study include data gaps, particularly in middle- and high-mortality countries, and uncertainty around the proportion of diseases that were foodborne. CONCLUSIONS: Foodborne diseases result in a large disease burden, particularly in children. Although it is known that diarrheal diseases are a major burden in children, we have demonstrated for the first time the importance of contaminated food as a cause. There is a need to focus food safety interventions on preventing foodborne diseases, particularly in low- and middle-income settings.

1,060 citations

Journal ArticleDOI
TL;DR: By separately integrating the sunlit and shaded leaf fractions of the canopy, a single layered sun/shade model is obtained, which is as accurate and simpler as a scaled version of a leaf model as distinct from an integrative approach.
Abstract: In big-leaf models of canopy photosynthesis, the Rubisco activity per unit ground area is taken as the sum of activities per unit leaf area within the canopy, and electron transport capacity is similarly summed. Such models overestimate rates of photosynthesis and require empirical curvature factors in the response to irradiance. We show that, with any distribution of leaf nitrogen within the canopy (including optimal), the required curvature factors are not constant but vary with canopy leaf area index and leaf nitrogen content. We further show that the underlying reason is the difference between the time-averaged and instantaneous distributions of absorbed irradiance, caused by penetration of sunflecks and the range of leaf angles in canopies. These errors are avoided in models that treat the canopy in terms of a number of layers ‐ the multi-layer models. We present an alternative to the multi-layer model: by separately integrating the sunlit and shaded leaf fractions of the canopy, a single layered sun/shade model is obtained, which is as accurate and simpler. The model is a scaled version of a leaf model as distinct from an integrative approach.

1,057 citations

Journal ArticleDOI
TL;DR: Changes in specific leaf area (SLA, projected leaf area per unit leaf dry mass) and nitrogen partitioning between proteins within leaves occur during the acclimation of plants to their growth irradiance, and the relative importance of both of these changes in maximizing carbon gain is quantified.
Abstract: Changes in specific leaf area (SLA, projected leaf area per unit leaf dry mass) and nitrogen partitioning between proteins within leaves occur during the acclimation of plants to their growth irradiance. In this paper, the relative importance of both of these changes in maximizing carbon gain is quantified. Photosynthesis, SLA and nitrogen partitioning within leaves was determined from 10 dicotyledonous C 3 species grown in photon irradiances of 200 and 1000 μ mol m - 2 s - 1 . Photosynthetic rate per unit leaf area measured under the growth irradiance was, on average, three times higher for high-light-grown plants than for those grown under low light, and two times higher when measured near light saturation. However, light-saturated photosynthetic rate per unit leaf dry mass was unaltered by growth irradiance because low-light plants had double the SLA. Nitrogen concentrations per unit leaf mass were constant between the two light treatments, but plants grown in low light partitioned a larger fraction of leaf nitrogen into light harvesting. Leaf absorptance was curvilinearly related to chlorophyll content and independent of SLA. Daily photosynthesis per unit leaf dry mass under low-light conditions was much more responsive to changes in SLA than to nitrogen partitioning. Under high light, sensitivity to nitrogen partitioning increased, but changes in SLA were still more important.

1,055 citations

Journal ArticleDOI
TL;DR: The method employs a discontinuous salt gradient and separates VLDL, LDL, and HDL as verified by cellulose acetate- and immuno-electrophoresis and offers some advantages for research applications.

1,054 citations

Journal ArticleDOI
TL;DR: In this article, the authors assess the prevalence and potential risk factors for late age-related macular degeneration (AMD) in three racially similar populations from North America, Europe, and Australia.

1,054 citations


Authors

Showing all 34925 results

NameH-indexPapersCitations
Cyrus Cooper2041869206782
Nicholas G. Martin1921770161952
David R. Williams1782034138789
Krzysztof Matyjaszewski1691431128585
Anton M. Koekemoer1681127106796
Robert G. Webster15884390776
Ashok Kumar1515654164086
Andrew White1491494113874
Bernhard Schölkopf1481092149492
Paul Mitchell146137895659
Liming Dai14178182937
Thomas J. Smith1401775113919
Michael J. Keating140116976353
Joss Bland-Hawthorn136111477593
Harold A. Mooney135450100404
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

92% related

University College London
210.6K papers, 9.8M citations

91% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

University of Edinburgh
151.6K papers, 6.6M citations

91% related

University of Cambridge
282.2K papers, 14.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023280
2022773
20215,261
20205,464
20195,109
20184,825